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Recap

Foundations

2 Weeks (problem formulation, terminology, collision checking)

Search-based

2 Weeks (A* and variants;

state-lattice-based plan-

ning)

Sampling-based

5 Weeks (RRT, PRM,

OMPL, Sampling Theory)

Optimization-based

2 Weeks (SCP, TrajOpt)

Current and Advanced Topics

3 Weeks (Comparative Analysis, Machine Learning and Motion Planning, Hybrid- and

Multi-Robot approaches)
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PRM: Probabilistic Roadmaps



Recap: Lecture 3: Probabilistic roadmap

Probabilistic roadmap

Idea: Sample random points in configuration space
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Probabilistic Roadmap [1]

• Randomized algorithm, published in 1996

• Two stages

1. Pre-processing (given environment and robot)

• Generate a weighted graph (roadmap)

2. Query (given start and goal configuration)

• Graph search

Multi-Query Planning

For the same environment and robot, only state 2 needs to be exe-

cuted. Thus, PRM is a multi-query planner.
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Graph Generation

1 def GenPRM(Q,Wfree ,B(·),N):

2 G = (V, E) = (∅, ∅)
3 # Generate N vertices

4 while |V| < N:

5 q = Sample(Q)

6 if B(q) ⊂ Wfree:

7 V = V ∪ {q}
8 # Connect vertices

9 for q in V:
10 for p in {p ∈ V : isNeighbor(p,q)}:
11 if path q to p feasible:

12 E = E ∪ {path q to p}
13 return G
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Query

1. Add qstart and qgoal to V
2. Connect qstart to at least one q ∈ V
3. Connect qgoal to at least one q ∈ V
4. Use A* to find shortest path from qstart to qgoal
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Ideal Roadmap Properties (1)

What constitutes a “good” roadmap?

• Accessible: For any qstart ∈ Qfree we can compute a path to some q ∈ V
• Departable: For any qgoal ∈ Qfree we can compute a path from some q ∈ V
• Connectivity-Preserving: For any q,p ∈ Qfree that can be connected, there is a

path in the roadmap

• Efficient with factor ϵ: For any q,p ∈ Qfree that can be connected with cost c∗,

there is a path in the roadmap with a cost of ϵc∗ or less

• Sparse: As few vertices and edges as possible
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Ideal Roadmap Properties (2)

1 def GenPRM(Q,Wfree ,B(·),N):

2 G = (V, E) = (∅, ∅)
3 # Generate N vertices

4 # ...

5 # Connect vertices

6 # ...

7 return G

When is the roadmap accessible, de-

partable, connectivity-preserving, efficient,

sparse?

N → ∞

There will be q ∈ V for almost every con-

figuration in Qfree .

+ Accessible, Departable, Connectivity-

Preserving, Efficient

- Not sparse; very slow computation (both

pre-processing and query)

N → 0

- Not Accessible, Not Departable, Not

Connectivity-Preserving, Not Efficient

+ Sparse
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Practical PRM Considerations

• Can run pre-processing and query in parallel

• Incrementally increase roadmap size

• Periodically check if a solution can be found

• Avoids picking N explicitly

• Many variants are possible based on choice of Sample, isNeighbor, and feasible

path computation

• Result is in the correct homeomorphism class, but often far from optimal (⇒ Path

Smoothing)
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Sampling



Rejection Sampling

Rejection Sampling

1. Sample q ∈ Q from a given distribution

2. Repeat until B(q) ⊂ Wfree (or: q ∈ Qfree)

Does not require Qfree explicitly
Inefficient in highly constrained

spaces

Common distributions: Uniform distribution, Gaussian/Normal distribution,

Deterministic Sequence
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Composite Sampling (1)

• Configuration q = (x , y , θ) ∈ Q
• All components are independent ⇒ we
can sample all components
independently:

1. x ∼ U(0, 8)
2. y ∼ U(0, 8)
3. θ ∼ U(0, 2π)
4. Resulting state q is still drawn from

a uniform distribution
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Composite Sampling (2)

What about SO(3) (orientation in 3D)?

Idea 0
• Sample three Euler angles uniformly

between [0, 2π)

• Construct rotation (rotation matrix,

quaternion, ...)

not uniform, because Euler angles are not

independent
Source: [2]
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Composite Sampling (3)

What about SO(3) (orientation in 3D)?

Source: [2]

Better idea

• Sample three numbers from U(0, 1)
• Quaternion

(qw , qx , qy , qz) =

(
√
1− u1 sin 2πu2,

√
1− u1 cos 2πu2,

√
u1 sin 2πu3,

√
u1 cos 2πu3)

More: Section 5.5.2 of [3] and [2]

12



Deterministic Sampling (1)

• Halton sequence (1960): better uniformity than pseudo-random numbers and

incremental

• Examples:

p = 2:

p = 3:
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Deterministic Sampling (2)

• Key idea: The i th number written using prime number p as base

1 def GenHalton(p, i):

2 h = 0

3 j = i

4 f = 1 / p

5 while j > 0:

6 quotient q, remainder r = j / p

7 h = h + f * r

8 j = q

9 f = f / p

10 return h

GenHalton(2, 6)

h = 0; j = 6; f = 1
2

q = 3; r = 0; h = 0; j = 3; f = 1
2·2

q = 1; r = 1; h = 1
4 ; j = 1; f = 1

4·2
q = 0; r = 1; h = 1

4+
1
8 ; j = 0; f = 1

8·2
3
8

Note: 6 (base 10) is 110 (base 2);
3
8 = 01

2 + 11
4 + 11

8
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Deterministic Sampling (3)

• Example sequence (p = 2, i = 1, . . . , 7):

1

2
,

1

4
,
3

4
,

1

8
,
5

8
,
3

8
,
7

8

• For higher-dimensional configuration spaces, use different prime numbers per
dimension

• Q ⊂ R2: Use p = 2 for x and p = 3 for y
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Deterministic Sampling (4)

2D Case, 100 Samples

Halton Uniform

Which one is pseudo-random uniform and which one is Halton?
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Dispersion: How well does a sampler cover the space? (1)

Dispersion

Let P ⊂ Q be a set of points in the configuration space and d : Q × Q → R≥0 be

a metric. The dispersion is the maximum distance from a configuration q ∈ Q to its

nearest sample p ∈ P:

dispersiond(P) = max
q∈Q

min
p∈P

d(q, p).
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Dispersion (2)

Dispersion

dispersiond(P) = max
q∈Q

min
p∈P

d(x , p).

L2-Norm

Source: [4]

Q = [0, 1]2 ⊂ R2;

d(x , p) =
√

(x1 − p1)2 + (x2 − p2)2

L∞-Norm

Source: [4]

Q = [0, 1]2 ⊂ R2;

d(x , p) = max (|x1 − p1|, |x2 − p2|)
18



Dispersion (3)

Minimal L∞ Dispersion: A Grid

Source: [4]

Q = [0, 1]2 ⊂ R2; dispersionL∞ = 1
2 d√n

= 1
2 2√36

= 1
12
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Dispersion (4)

Why do we not use a grid for sampling?

Source: [4]

A grid is not incremental (a resolution change requires exponentially many additional

points).

Here: n = 4 ⇒ n · 3d = 4 · 32 = 36 configurations
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Sampling Method Pros and Cons

Lattice Property

Neighbors can be computed directly

21



Nearest-Neighbor Computation



Goal

Efficient Nearest-Neighbor calculation with the following interface:

• addConfiguration(q) -> None: Adding a configuration q ∈ Q to the

datastructure

• queryK(q, k) -> [Configuration]: Return the k nearest (with respect to a

distance metric) configurations of q

• queryR(q, r) -> [Configuration]: Return the configurations that are within

a given distance r of q
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Background: Balanced binary search trees (1)

A balanced binary search tree with the points in the leaves

Source: [5]
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Background: Balanced binary search trees (2)

Searching if 25 is part of the tree

Source: [5]
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Background: Balanced binary search trees (3)

Search path for 25 and 90

Source: [5]
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Background: Balanced binary search trees (4)

A 1-dimensional range query with [25, 90]

Source: [5]
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Background: Balanced binary search trees (5)

• Build a binary search tree of N numbers (time: O(N logN); space: O(N))

• Finding an entry: time: O(logN)

• Range query of K numbers: time O(logN + K )

What is the naive Range Query Time Complexity?

We have to consider all N numbers ⇒ O(N)
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Kd-Trees

• Extend the same idea to multi-dimensional data

• 2D case:

• Split the point set alternatingly by x-coordinate and by y -coordinate

• Split by x-coordinate: split by a vertical line that has half the points left or on, and

half right

• Split by y-coordinate: split by a horizontal line that has half the points below or on,

and half above
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Kd-Tree Example

Source: [5]
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Kd-Tree Construction

Source: [5]
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Kd-Tree Regions of Nodes

Source: [5]

Region can be:

• Stored explicitly at

every node, OR

• Computed on-the-fly,

while traversing from

the root
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Kd-Tree Query (1)

Source: [6]

Traverse existing tree to find region of query point (leaf in tree)
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Kd-Tree Query (2)

Source: [6]

At leaf node: compute distance to each point in the node
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Kd-Tree Query (2)

Source: [6]

At leaf node: compute distance to each point in the node
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Kd-Tree Query (3)

Source: [6]

Backtrack to sibling nodes
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Kd-Tree Query (4)

Source: [6]

Update distance bounds, when a new nearest neighbor is found
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Kd-Tree Query (5)

Source: [6]

Prune search area based on region bounds and distance bounds
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Kd-Tree: Practical Notes

• KD-trees are much faster than a naive implementation (time complexity:
O(N1−1/d + K )

• This is poor for high-dimensional spaces

• Approximate Nearest Neighbor Algorithms (ANN) can help (but theoretical

implications for sampling-based planners unknown)

• Possible to support more complicated configuration spaces (such as SE (3))

• KD-Trees have a construction and query stage!

How can KD-trees be used incrementally?

• Reconstruct the tree only every 1000 nodes, or so

• Keep Kd-tree and plain list since last reconstruction

• For a query, search both Kd-tree and list
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PRM - Revisited



PRM

1 def GenPRM(Q,Wfree ,B(·),N):
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Motion Collision Checking

• Flexible Collision Library has continuous collision checking

• Works as long as the motion is a linear interpolation of two configurations

• Alternative:

• Compute intermediate configurations during the motion

• Check the collision for each intermediate configuration

• Note, that this is significantly slower than continuous collision checking
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Path Smoothing

• The output of PRM is often far from optimal

• Post-processing of the data can help

Path Shortening

1 def PathShortening(⟨q1,q2, . . . ,qN⟩):
2 Pick qi ,qj randomly

3 if (qi ,qj) can be connected by a line:

4 replace path between qi ,qj using the line
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Path Shortening Example

Source: [6]
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Path Shortening Example

Source: [6]
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Path Shortening Example

Source: [6]
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Theoretical Properties

PRMs are probabilistically complete

Guaranteed to find a solution, if one exists, but only in the limit of the number of

samples (that is, only as the number of samples approaches infinity).

• This is a milder form of completeness

• Typically no convergence guarantee, so not that helpful in practice

• Sampling-based planning works very well in high-dimensional spaces
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Conclusion

• PRM are multi-query planners

• Kd-trees allow fast nearest-neighbor computation

• Concept simple, but difficult in details

• Choice of sampling

• Choice of nearest-neighbor computation

• Handling of metric spaces correctly throughout

Next Time
• Tree-based Planners; Optimizing Planners
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