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Foundations
2 Weeks (problem formulation, terminology, collision checking)

Optimization-based

Sampling-based

Search-based
2 Weeks (A* and variants;| |5 \Weeks (RRT, PRM,| [2 Weeks (SCP, TrajOpt)

state-lattice-based plan-|  |OMPL, Sampling Theory)
ning)

Current and Advanced Topics
3 Weeks (Comparative Analysis, Machine Learning and Motion Planning, Hybrid- and
Multi-Robot approaches)
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Probabilistic Roadmap [1]

e Randomized algorithm, published in 1996

e Two stages

1. Pre-processing (given environment and robot)
e Generate a weighted graph (roadmap)
2. Query (given start and goal configuration)

e Graph search

Multi-Query Planning

For the same environment and robot, only state 2 needs to be exe-
cuted. Thus, PRM is a multi-query planner.




Graph Generation

1 def GenPRM(Q, Wee, B(+), N :

3 # Generate N vertices

4 while |V| < N: Ojo

5 q = Sample(Q)

6 if B(q) C Whee: o 1 O
o

[§)

. V=VuU{q} -

8 # Connect wvertices D
9 for q in V:

10 for p in {p € V :isNeighbor(p,q)}:

11 if path q to p feasible:

12 & = & U {path q to p}

13 return G
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Graph Generation

1 def GenPRM(Q, Wee, B(+), N :
G=WV.€)=(0,0)
3 # Generate N vertices
4 while |V| < N:

[§)

5 q = Sample(Q)
6 if B(q) C Whee:
7 V=VU{a}

8 # Connect vertices
9 for q in V:

10 for p in {p € V :isNeighbor(p,q)}:
11 if path q to p feasible:
12 & =& U {path q to p}

13 return G
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1. Add qstart and qgoa to V

2. Connect qga to at least one q € V

3. Connect qgo, to at least one q € V

4. Use A* to find shortest path from Qstart 10 Qgoal



Ideal Roadmap Properties (1)

[What constitutes a “good” roadmap? ]

e Accessible: For any Qstart € Qfee We can compute a path to some q € V
e Departable: For any qgoas € Qfree We can compute a path from some q € V

e Connectivity-Preserving: For any q,p € Qfee that can be connected, there is a
path in the roadmap

e [Efficient with factor e: For any q,p € Qfee that can be connected with cost c*,
there is a path in the roadmap with a cost of ec* or less

e Sparse: As few vertices and edges as possible



Ideal Roadmap Properties (2)

1 def GenPRM(Q, Wree, B(-), N :
2 G=(,8)=(00)

3 # Generate N wvertices

4 # ...

N — oo

5 # Connect wvertices
6 # ...

7 return G

J

N— 0

When is the roadmap accessible, de-
partable, connectivity-preserving, efficient,

sparse?




Ideal Roadmap Properties (2)

( ‘
1 def GenPRM(Q, Wiee, B(-), N : There will be q € V for almost every con-
2 G=,6)=(00) figuration in Qfee.

’ ZGenerata I vertices + Accessible, Departable, Connectivity-
: # 'C(');mect vertices Preserving, Efficient

6 # ... - Not sparse; very slow computation (both
7 return G pre-processing and query)

When is the roadmap accessible, de- - Not Accessible, Not Departable, Not

partable, connectivity-preserving, efficient, Connectivity-Preserving, Not Efficient

fparse? | + Sparse




Practical PRM Considerations

e Can run pre-processing and query in parallel
e Incrementally increase roadmap size
e Periodically check if a solution can be found
e Avoids picking N explicitly
e Many variants are possible based on choice of Sample, isNeighbor, and feasible

path computation

e Result is in the correct homeomorphism class, but often far from optimal (= Path
Smoothing)



Sampling




Rejection Sampling

Rejection Sampling

1. Sample g € Q from a given distribution

2. Repeat until B(q) C Weee (or: q € Qfee)

Inefficient in highly constrained
[Does not require Qpee explicitly ] &Y
spaces

Common distributions: Uniform distribution, Gaussian/Normal distribution,
Deterministic Sequence



Composite Sampling (1)

e Configuration q = (x,y,0) € Q
e All components are independent = we
can sample all components
independently:
1. x ~(0,8)
2. y ~U(0,8)
3. 0 ~U(0,2n)
4. Resulting state q is still drawn from
a uniform distribution

10



Composite Sampling (2)

What about SO(3) (orientation in 3D)?

e Sample three Euler angles uniformly
between [0, 27)

e Construct rotation (rotation matrix,

quaternion, ...)

not uniform, because Euler angles are not

independent

Source: [2]
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Composite Sampling (3)

What about SO(3) (orientation in 3D)?

Better idea

e Sample three numbers from ¢£(0, 1)

e Quaternion

(qw, gx, qy,qz) =
(V1 — u1sin2mua, /1 — up cos 2mup,
V/u1 sin 2wus, \/up cos 2mwus3)

More: Section 5.5.2 of [3] and [2]

Source: [2]
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Deterministic Sampling (1)

e Halton sequence (1960): better uniformity than pseudo-random numbers and
incremental

e Examples:

p=2:
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e Halton sequence (1960): better uniformity than pseudo-random numbers and

incremental
e Examples:
p=2:
' 1 1 3 1 5 3 7 '
8 4 8 2 8 4 8
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Deterministic Sampling (1)

e Halton sequence (1960): better uniformity than pseudo-random numbers and

incremental

e Examples:
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Deterministic Sampling (2)

e Key idea: The ith

GenHalton(p, i) :

h=0

j=1

f=1/p

while j > O:

quotient q, remainder r
h=h+f=x*xr

j=q
f=£f/p
return h

j/p

o

number written using prime number p as base

GenHalton(2, 6)

=6 1
q=3; r—O h—0j23;f:ﬁ
g=1,r=1; h—ijzl;f:‘rl2
ZzO,rzl,h—%—i—%;j:O;f:S%
8

Note: 6 (base 10) is 110 (base 2);
3 1 1 1
3 = 0§ + ].Z + 1§
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Deterministic Sampling (3)

7

~—

e Example sequence (p=2,i=1,...
1 13
27 47 47
e For higher-dimensional configuration spaces, use different prime numbers per

| w
|

)

| o1

Y

Q| =

dimension
e QCR? Use p=2forxand p=3fory
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tic Sampling (4)

inis

Determ

16

-

Which one is pseudo-random uniform and which one is Halton?




tic Sampling (4)

inis

Determ

Uniform

Halton
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Dispersion: How well does a sampler cover the space? (1)

Let P C Q be a set of points in the configuration space and d : Q x Q@ — R>q be
a metric. The dispersion is the maximum distance from a configuration q € O to its
nearest sample p € P:

dispersiong(P) = maxmin d(q, p).
parei(1?) = merni elle, )




Dispersion (2)

Dispersion

dispersiony(P) = max min d(x, p).
persion(P) — maxrmin d(x. p)

Source: [4]

Q = [05 1]2 C RZ;

d(x,p) = /(x1 — p1)? + (2 — p2)?

Source: .[4]
Q = [07 1]2 C RZ;
d(x, p) = max(|x1 — p1l, |x2 — p2l) s




Minimal Loo Dispersion: A Grid

Source: [4]

Q = [0,1]° C R?; dispersion;oo = 2},

D
I
%#
I
ol

19



Dispersion (4)

Why do we not use a grid for sampling?

20



Dispersion (4)

Why do we not use a grid for sampling?

»

Source: [4]

A grid is not incremental (a resolution change requires exponentially many additional
points).
Here: n =4 = n-39 =432 = 36 configurations

20



Sampling Method Pros and Cons

Sampling Uniform grids Random sampling Halton sequences
property
. . 1 In'/4(n) f(d)
dispersion O %) O(T) O(d—ﬁ)
incremental no yes yes
lattice yes no yes (more complex)

Lattice Property
Neighbors can be computed directly

21




Nearest-Neighbor Computation




Efficient Nearest-Neighbor calculation with the following interface:

e addConfiguration(q) -> Nome: Adding a configuration q € Q to the
datastructure

e queryK(q, k) -> [Configuration]: Return the k nearest (with respect to a
distance metric) configurations of q

e queryR(q, r) -> [Configuration]: Return the configurations that are within

a given distance r of q

22



Background: Balanced binary search trees (1)

A balanced binary search tree with the points in the leaves

49

23 80
10 37 62 89

3 19 30) 149 99 70 89 93

[37[10] [19] [23] [30] [37 59] [62] [70] [30 03] [97

Source: [5]
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Background: Balanced binary search trees (2)

Searching if 25 is part of the tree

24



Background: Balanced binary search trees (3)

Search path for 25 and 90

23



Background: Balanced binary search trees (4)

A 1-dimensional range query with [25, 90]

4

23 8
10 37 S

26



Background: Balanced binary search trees (5)

e Build a binary search tree of N numbers (time: O(N log N); space: O(N))
e Finding an entry: time: O(log N)
e Range query of K numbers: time O(log N + K)

What is the naive Range Query Time Complexity?

27



Background: Balanced binary search trees (5)

e Build a binary search tree of N numbers (time: O(N log N); space: O(N))
e Finding an entry: time: O(log N)
e Range query of K numbers: time O(log N + K)

What is the naive Range Query Time Complexity?

We have to consider all N numbers = O(N)

27



e Extend the same idea to multi-dimensional data

e 2D case:

e Split the point set alternatingly by x-coordinate and by y-coordinate

e Split by x-coordinate: split by a vertical line that has half the points left or on, and
half right

e Split by y-coordinate: split by a horizontal line that has half the points below or on,
and half above

28



Kd-Tree Example

2
ls
Pa s
Lo D2
by P1
*DP3
Ly
4y

Source: [5]
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Kd-Tree Construction

Algorithm BUILDKDTREE(P, depth)

1. if P contains only one point

2 then return a leaf storing this point

3. else if depth is even

4 then Split P with a vertical line ¢ through the
median x-coordinate into P; (left of or
on ¢) and P, (right of ¢)

5. else Split P with a horizontal line ¢ through
the median y-coordinate into P; (below
or on £) and P, (above /)

6. Vieft <~ BUILDKDTREE(P{,depth+1)

7. Viight <~ BUILDKDTREE(P2,depth+ 1)

8. Create a node v storing ¢, make Vg the left
child of v, and make vy the right child of v.

9. return v

Source: [5] &



Kd-Tree Regions of Nodes

fl .
o o Region can be:
o ¢ . o e Stored explicitly at
'. ® e e every node, OR
° o . . e Computed on-the-fly,
L. - 7 while traversing from
o . N the root
° .
® o © . °
region(v) |,

Source: [5]
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Kd-Tree Query (1)

) J : o /O\O

Traverse existing tree to find region of query point (leaf in tree)

32
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Kd-Tree Query (1)

Traverse existing tree to find region of query point (leaf in tree)
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Kd-Tree Query (2)

ource:

At leaf node: compute distance to each point in the node

83



Kd-Tree Query (2)

o0 o o ) ’ o/ \o
Al e )

At leaf node: compute distance to each point in the node

83



Kd-Tree Query (3)
® ® ‘

e® o O

Backtrack to sibling nodes



Kd-Tree Query (4)

BN N

Update distance bounds, when a new nearest neighbor is found

85



Kd-Tree Query (5)

Prune search area based on region bounds and distance bounds

36



Kd-Tree Query (5)
[ ] e @ ® ]
| olue
]
@

i |:|: o/\b o’/>o

Prune search area based on region bounds and distance bounds
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Kd-Tree Query (5)

Source: [6]

Prune search area based on region bounds and distance bounds



Kd-Tree: Practical Notes

e KD-trees are much faster than a naive implementation (time complexity:
O(Nl_l/d—i— K)
e This is poor for high-dimensional spaces
e Approximate Nearest Neighbor Algorithms (ANN) can help (but theoretical
implications for sampling-based planners unknown)

e Possible to support more complicated configuration spaces (such as SE(3))
o KD-Trees have a construction and query stage!
How can KD-trees be used incrementally?

e Reconstruct the tree only every 1000 nodes, or so

o Keep Kd-tree and plain list since last reconstruction

e For a query, search both Kd-tree and list

37



PRM - Reuvisited




1 def GenPRM(Q, Wee, B(+), N :
2 G=V,€)=(0,0)

3 # Generate N vertices

4 while |V| < N:

5 q = Sample(Q)
6 if B(q) C Whee:
7 V=VU{aq}

8 # Connect vertices
9 for q in V:

10 for p in {p € V :isNeighbor(p,q)}:
11 if path q to p feasible:
12 & = & U {path q to p}

13 return G
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Motion Collision Checking

e Flexible Collision Library has continuous collision checking
e Works as long as the motion is a linear interpolation of two configurations
o Alternative:

e Compute intermediate configurations during the motion
e Check the collision for each intermediate configuration
e Note, that this is significantly slower than continuous collision checking

39



Path Smoothing

e The output of PRM is often far from optimal

e Post-processing of the data can help

Path Shortening

~

1 def PathShortening({(qi,q2,...,qn)):

2 Pick q;,q; randomly

s if (qj,q;) can be connected by a line:

4 replace path between q;,q; using the line

40



Path Shortening Example

Source: [6]

41



Path Shortening Example

Source: [6]
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Path Shortening Example

Source: [6]
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Theoretical Properties

PRMs are probabilistically complete

Guaranteed to find a solution, if one exists, but only in the limit of the number o
samples (that is, only as the number of samples approaches infinity).

e This is a milder form of
e Typically no convergence guarantee, so not that helpful in practice

e Sampling-based planning works very well in high-dimensional spaces

42



Conclusion

e PRM are multi-query planners

e Kd-trees allow fast nearest-neighbor computation
e Concept simple, but difficult in details

e Choice of sampling
e Choice of nearest-neighbor computation
e Handling of metric spaces correctly throughout

| e Tree-based Planners; Optimizing Planners \

43
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