Motion Planning Lecture 6

Tree-based and Asymptotically-Optimal Planning

Wolfgang Honig (TU Berlin) and Andreas Orthey (Realtime Robotics)
May 29, 2024

Foundations
2 Weeks (problem formulation, terminology, collision checking)

Optimization-based

Sampling-based

Search-based
2 Weeks (A* and variants;| |5 \Weeks (RRT, PRM,| [2 Weeks (SCP, TrajOpt)

state-lattice-based plan-| |OMPL, Sampling Theory)
ning)

Current and Advanced Topics
3 Weeks (Comparative Analysis, Hybrid- and Multi-Robot approaches)

Introduction

e Tree-based motion planning (RRT)

e Introduction asymptotically optimal planning
e Optimal tree-based planning (RRT*, BIT*)

Tree-based motion planning

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)
e Invented independently by Steve M. LaValle (1998) and David Hsu (1997)

e One of the most efficient algorithms for motion planning

e Growing a tree through random extensions

D Hsu, et al., "Path planning in expansive configuration spaces” (1999)
SM LaValle, " Rapidly-exploring random trees: A new tool for path planning”, (1998)
JJ Kuffner, SM LaValle, "RRT-connect: An efficient approach to single-query path planning”, (2000)

Pseudocode RRT

1 def RRT(xstart, xgoal, mu):

2 V.AddNode (xstart)

3 while not finished:

4 xrand = SampleRandom()

5 xnear = NearestNeighbor (xrand)

6 xnew = Steer(xnear, xrand, mu)

7 if xnear == xnew:

8 continue

9 V.AddNode (xnew)

10 V.AddEdge (xnear, xnew)

11 if Distance(xnew, xgoal) < Epsilon:
12 return Path(xnew)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Xrand
O

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Xrand
O

Xnear

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Xrand
O

X new

Xnear

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Xrand

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Xnear

Xrand

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

- - -~ ~
y N
\
Xnear \ O
Xnew
-0 |
/ - -~
/ =~ - Xrand
\ / @)
N v

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

X ||

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Xrand (@)

20

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

21

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

22

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

7 e

23

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

7 e

O Xrand

24

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

/ N
Xnear

O Xrand

23

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Q Xrand

26

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Q Xrand

27

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

7 e

28

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

7 e

Xrand

29

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

Xnear
/ N

Xrand

30

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

31

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

32

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

83

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

34

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

85

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

36

Rapidly-exploring random tree

Rapidly-exploring random tree (RRT)

37

Rapidly-exploring random tree (RRT)

|RRT is one of the most efficient planners because it has an implicit Voronoi bias |

38

Rapidly-exploring random tree (RRT)

Voronoi region

Let g1,..., gk be a set of configurations on the state space Q. The Voronoi region is
defined as

Rk ={q € Q| d(q,R«) < d(q,R;), forall j # k}

39

Rapidly-exploring random tree (RRT)

Voronoi bias

Probability of being selected is proportional to Voronoi region of a node in the tree.

Exploration/Exploitation trade-off.

45 iterations 390 iterations
40

Rapidly-exploring random tree (RRT)

Improvements

e Extend tree towards goal

e Sample goal region (with probability 1)

e Bidirectional tree

41

Improvement A - Extend towards goal

Extend towards goal

/e

Improvement A - Extend towards goal

Extend towards goal

ST

Improvement B - Sample goal region

X rand

a4

Improvement B - Sample goal region

45

Improvement B - Sample goal region

Goal-bias

X rand

46

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

47

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

48

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

49

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

50

Improvement C - Bidirectional Tree

Bidirectional Rapidly-exploring random tree (Bi-RRT)

51

Rapidly-exploring random tree (RRT)

Further Improvements
e Path shortening after solution is found

e Multi-tree extension

e Targeted sampling

52

Introduction to Asymptotic
Optimality Planning

Optimality

|What is optimality? |

53

Optimality

Question

What is optimality?

Optimality (High-level)

The property of a planner to return a motion which surpasses all other motions in
quality.

54

Optimality

|What is optimality? |

Optimality (Mid-level)

From all possible paths, return the one which minimizes an objective function.

55

Optimality

What is optimality?

Optimality (Low-level)

Given a motion planning problem Q, g, gg, find a solution path p*, which minimizes
an objective cost function ¢, i.e. c(p*) < c(p) for all p which solve the problem.

56

Optimality

|Why do we need optimality? |

57

Aesthetics

R-0.B-0.T. Comics

JORGE CHAM 2009 Awww WILLOWGARAGE .COM

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S 60T FLAIR." 58

59

::mrr P |
{ 1 /Eﬂ F'_i'..i!|/ "‘: ﬁ!l
1 id r

L3l

60

Coverage

Optimality

Usefulness of Optimality

e Aesthetics: Should look good from an observer perspective

Efficiency: Should find time optimal paths

Safety: Should keep distance to prevent collisions

Coverage: Should reach every point of the workspace

62

Optimality

Optimality principles also help us to search efficiently [1].
e A* heuristic: Prioritization search of best-cost paths VS. brute force search

e Pruning using necessary conditions

63

Introduction to Asymptotic
Optimality Planning

Cost framework

64

Cost function types

Objective (or cost) function c¢. Graph G = (V, E) and paths P = (eq,..., en).

e Cost for a configuration c: V — R>g

e Cost of an edge c: E — R>g

e Cost of a path c: P = R>g

65

Cost functions examples

Shortest length
e Configuration cost: Zero

e Edge cost: Length of segment, metric distance

e Path cost: Sum of edge costs

66

Cost functions examples

Maximum clearance

e Configuration cost: Distance from robot to environment

e Edge cost: Maximum over all configurations on edge

e Path cost: Maximum over all edges on path

67

Cost functions examples

Lowest energy
e Configuration cost: Zero

e Edge cost: Energy spent going from A to B

e Path cost: Sum of edge energies

68

Additive costs
e Note: Most planners like RRT*, BIT* require additive cost!

e Additive cost: cost(A,B,C) = cost(A,B) + cost(B,C)

69

Non-additive cost example

Number of objects manipulated by
a robot manipulator

Bayraktar et al., " Solving Rearrangement Puzzles using Path Defragmentation in Factored State
Spaces”, Robotics and Automation Letters (RA-L), 2023

70

Non-additive cost example

Average clearance cost.

71

Non-additive cost example

Average clearance cost.

72

Non-additive cost example
Average clearance cost.

73

74

Cost framework

Cost framework recap

e What: Best possible motion

o Why: Aesthetics, Efficiency, Safety, Coverag, Optimality for efficient search

e How: Cost framework, additive costs

75

Optimal tree-based motion planning

RRT and Optimality (1)

What if we keep running RRT?

76

RRT and Optimality (1)

What if we keep running RRT?

What causes this?

J

76

RRT and Optimality (1)

What if we keep running RRT?

What causes this?
Edges are only added, never changed (rewired).

.

76

RRT and Optimality (2)

Sampling-based algorithms for optimal motion planning
S Karaman, E Frazzoli - The international journal of robetics ..., 2011 - journals.sagepub.com

During the last decade, sampling-based path planning algorithms, such as probabilistic
roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well ...

¢ Save DY Cite | Cited by 3551] Related articles

7

RRT and Optimality (2)

Sampling-based algorithms for optimal motion planning
S Karaman, E Frazzoli - The international journal of robetics ..., 2011 - journals.sagepub.com

During the last decade, sampling-based path planning algorithms, such as probabilistic
roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well ...

¢ Save DY Cite | Cited by 3551] Related articles

RRT is Suboptimal [2, Theorem 33]

The cost of the best solution returned by RRT converges to a suboptimal value, with

P ({ lim YRRT > c}) ~1.

n—oo

probability one:

7

RRT*: RRT with Rewiring

Algorithm 2 RRT” (T, := 8, 2goa1 := £,0, 7, 1))
V = {Tim} e Pseudo code from [3]

1:
2: for j = 1tondo

3: Zrnd 4 SAMPLE-FREE()

41 Zpear ¢+ NEAREST(Zmnd, V)

S: Lpew < STEER(-THCM: Lrand s T])

6: if COLLISION-FREE(Zncars Tnew) then

7 Xuear = NEAR(Znew, V. min{r(|V|),n})
8

V=Vu {xnc\h}

9: TLmin = Tnear

10: Cmin = COST(J:mM) + ”xncw - I'ncm'”

11: for Znear € Xpear do

12: if COLLISION-FREE(Znear, Znew) then

13: if COST(Znear) + ||Znew — Znear|| < €min then
14: Lmin = Lnear

15: Cmin = COST(xncm') + H:Uncw - afm:m'”

16: E=FEuU {(fmin; 1‘ncv~)}

17: for Znear € Xnear do

18: if COLLISION-FREE(Znew, Tnear) then

19: if COST(Znew) + ||Znear — Znew|| < COST(Znear) then
20: Tparent = PARENT(Zncar)
21: E=EU {(xncw, xncm')} \ {(xpm'cnt: 3:nt:m')}

22: return G = (V. E) 78

RRT*: RRT with Rewiring

Algorithm 2 RRT” (T, := 8, 2goa1 := £,0, 7, 1))
SV = {Tm} e Pseudo code from [3]

:for j=1tondo
. Zhand — SAMPLE-FREE() e Parent of qpew: May use other

Znear < NEAREST (Zand, V')

1
2

3

4 .
S T ¢ STEER(Toew, o,) parent than quesr With lowest cost
6

7

8

:_if COLLISTON-FREE(Zpeqr: Tnew) then . (Within neighborhood of qnew)

Xuear = NEAR(Zoew, V. min{r(|V|),n})
V=V U{Znew}
9: Lmin = Tnear
10: Cmin = COST(Znear) + ||Znew — Tnear|
11: for Zncar € Xicar do
12: if COLLISION-FREE(Znear, Tnew) then
13: if COST(J'ﬂcm) + H-‘l'nc»\ - -f'nczu'” < Cmin then
14: Lmin = Lnear
15: Cmin = COST(J'ncﬂr) + HJ'm:\A - -l'ncm'”
16: C E=FEU {(-I'min« -fnc\,\)} J
17: for Znear € Xnear do
18: if COLLISION-FREE(Znew, Tnear) then
19: if COST(new) + ||Tnear — Tnew|| < COST(Xnear) then
20: Zparent = PARENT(Znear)
21: E=EU {(xnew, xncm‘)} \ {(xpm'cnt; 3:nc:\r)}

22: return G = (V. E) 78

RRT*: RRT with Rewiring

Algorithm 2 RRT” (T, := 8, 2goa1 := £,0, 7, 1))

1: V= {Iiml}

2: for j = 1tondo

3: Zrmd 4 SAMPLE-FREE()

41 Znear + NEAREST(Zmnd, V)

5! Zpew +— STEER(Zncars Trand; 1))

6 if COLLISION-FREE(Zpear: Znew) then .
7 Xuear = NEAR(Zoew, V. min{r(|V|),n})

8: V=V U{Znew}

9: Lmin = Lnear

10: Cmin = COST(Znear) + ||Znew — Tnear|

11: for Znear € Xoear do

12: if COLLISION-FREE(Znear, Znew) then

13: if COST(Znear) + ||Znew — Znear|| < €min then

14: Lmin = Tnear

15: Cmin = COST("CI'LCIII') + Hiffm:v\ - -L'ncm'”

16: | E = EU{(Zmin; Tnew)})
17: for Znear € chur do

18: if COLLISION-FREE(Znew, Tnear) then

19: if COST(Znew) + ||Znear — Tnew|| < COST(Zpear) then
20: Zparent = PARENT(Zncar)
21: E=EU {(-L’ncw- &r \r)} \ {(-L'pzu'cn[- -L'ncur)}
22: return G = (V, E)

Pseudo code from [3]

Parent of qpew: May use other
parent than quesr With lowest cost

(within neighborhood of qpew)

Rewire edges: Use pen as a new
parent, for neighboring
configurations, if it reduces costs

78

RRT*: RRT with Rewiring

Algorithm 2 RRT” (T, := 8, 2goa1 := £,0, 7, 1))

V= {Iiml}

:for j=1tondo

{ Tmnd + SAMPLE-FREE()
Znear — NEAREST(Zrand, V)

if COLLISION-FREE(Z ey, Tnew) then

1
2
3
4:
5: Tnew = STEER(Tneary Trand s 17)
6
7
8

((Xoer = NEAR (Znew, V, min{r(|V|),n})
V=VU {-lfnc\a}
9: Lmin = Lnear
10: Cmin = COST(Znear) + ||Znew — Tnear|
11: for Zncar € Xicar do
12: if COLLISION-FREE(Znear, Znew) then
13: if COST(Znear) + [|Znew — Znear|| < €min then
14: Lmin = Lnear
15: Cmin = COST(-L'H::M') + Hilfm:w - -L'ncm'”
16: L E=FEU {(-L’min« -L'nc»\)}
17: for Znear € chur do
18: if COLLISION-FREE(Znew, Tnear) then
19: if COST(Znew) + ||Znear — Tnew|| < COST(Zpear) then
20: L parent — PARENT('
21: E=EU {(-L’ncw- &€ Lnr)} \ {(-L'pzu'cn[- -L'ncur)}

22: return G = (V, E)

Pseudo code from [3]

Parent of qpew: May use other
parent than quesr With lowest cost

(within neighborhood of qpew)

Rewire edges: Use pen as a new
parent, for neighboring
configurations, if it reduces costs

Neighborhood radius depends on

tree size:

1
log | V| 4+
(v = (257

78

Rewiring

If we add a new configuration x, we execute two rewiring operations:
e Rewire x to best parent

e Rewire all children nodes

79

Pseudocode tree rewiring

1 def Rewire(x):

2 N = Neighbours (x)
3 for x_n in N:

4 Rewire(x_n, x)
5 for x_n in N:

6 Rewire(x, x_n)

g def Rewire(x, y):

9 p = Steer(x, y)

10 if ConstraintFree(p):

11 if cost(x)+cost(p) < cost(y):
12 y.parent = x

80

Pseudocode RRT

1 def RRT(xstart, xgoal, mu):

2 V.AddNode (xstart)

3 while not finished:

4 xrand = SampleRandom()

5 xnear = NearestNeighbor (xrand)

6 xnew = Steer(xnear, xrand, mu)

7 if xnear == xnew:

8 continue

9 V.AddNode (xnew)

10 V.AddEdge (xnear, xnew)

11 Rewire(xnew) ##Rewiring operation to make it A0
12 if Distance(xnew, xgoal) < Epsilon:
13 return Path(xnew)

81

RRT* Example (1)

Source: [4]

Motion planning problem (orange = qstart) -

RRT* Example (2)

R

Source: [4]

Intermediate tree and new sample q,anq (purple x) -

RRT* Example (3)

Source: [4]

Nearest qnear in existing tree is found (here: Qstart) o

RRT* Example (4)

Source: [4]

Steer computes qpew on the line from Qsare t0 Qrand o

RRT* Example (5)

R

Source: [4]

New edge is rejected (not collision-free) -

RRT* Example (6)

Source: [4]

So far behavior is exactly the same as RRT; Fast-forward we have a larger tree e

RRT* Example (7)

Source: [4]

New sample ., and closest node in the tree qpear -

RRT* Example (8)

Source: [4]

Resulting edge (Qnew, Anear) is collision-free -

RRT* Example (9)

Source: [4]

This edge would be added in RRT .

RRT* Example (10)

Source: [4]

RRT*: Consider all configuration of the tree in the neighborhood of qpey o

RRT* Example (11)

Source: [4]

RRT*: Use a lower-cost parent for qpew (other than qpear) -

RRT* Example (12)

Source: [4]

RRT*: Rewire the neighbors to use qne, as a parent to reduce the cost 93

94

l Source:r [2] J

RRT vs. RRT* (1)

RRT vs. RRT* (2)

RRT* Properties

RRT#* is asymptotically optimal
The probability that the solution cost of RRT* is not more than (1 + €)c* is 1, as the
number of iterations go to infinity:

nll_)n;o]P’({cn —c*>€})=0, Ve > 0.

96

RRT* Properties

RRT#* is asymptotically optimal
The probability that the solution cost of RRT* is not more than (1 + €)c* is 1, as the
number of iterations go to infinity:

nll_)n;o]P’({cn —c*>€})=0, Ve > 0.

However, the convergence rate is unknown!

96

RRT* vs RRT

e Why is RRT probabilistically complete?
e Why is RRT not asymptotically optimal?
e Why is RRT* asymptotically optimal?

97

Optimal tree-based motion planning

Probabilistic completeness proof RRT

98

Proof Sketch

Probabilistic Completeness RRT
e A planner is probabilistic complete if it finds a solution if one exists.

e Main proof for RRT is based on induction.

e Requires number of samples going to infinity.

99

Proof sketch

| |
O

O

Petr Svestka, " On Probabilistic Completeness and Expected Complexity of Probabilistic Path
Planning”, 1998 [svestka 1998] 100

Proof sketch

O

Assumption A: There exists a feasible path. Lo

Proof sketch

Assumption B: Feasible path has € clearance. (oo

Proof sketch

- [. .

Assumption C: Sampling is dense. 103

Proof sketch

SR

Assumption C: Sampling is dense. Loa

Proof sketch

Assumption C: Sampling is dense.

105

Proof sketch

Step 1: Cover feasible path with §-spaced discs. 106

Proof sketch

Step 2: Induction step (Base case is trivial)
107

Proof sketch

Step 2a: Assume we reached the n-th ball (Induction Assumption).
Need to prove that we reach (n+1)-th ball. 108

Proof sketch

Step 2b: Sample in (n+1)-th ball
109

Proof sketch

Step 2c: There exists a valid connection in free space
110

Proof sketch

This shows that you can construct a §-similar path
111

Proof sketch

e Assumption A: There is a feasible path
e Assumption B: It has € clearance

e Assumption C: Sampling is dense

Proof sketch

e Put d-spaced balls onto feasible path (depending on ¢)

e Execute induction proof

e Proof that the first ball is reached (trivial)
e Proof that you reach ball By from By (main part)

112

Proof sketch

|What if we replace "feasible path” with "optimal path”. Does the proof still hold? |

113

Proof sketch

e There is no guarantee that you make a connection from By to By (there might
be a different nearest neighbor)

This is why this is not an optimality proof!

114

Proof sketch

|How do we fix this proof for optimality? |

115

Optimal tree-based motion planning

Asymptotically optimal proof RRT*

116

Proof sketch

O

S Karaman and E Frazzoli, " Sampling-based Algorithms for Optimal Motion Planning”, 2011 [2]
117

Proof sketch

O

Assumption A: There exists an optimal path. 18

Proof sketch

Assumption B: Optimal path has € clearance. 110

Proof sketch

Assumption C: Sampling is dense.

120

Proof sketch

/‘

RRT might find wrong wiring.
121

Proof sketch

ﬁ\@
£an

RRT* considers neighbors.

i

122

Proof sketch

S

ﬁ/

RRT* computes cost to come.

y

123

Proof sketch

RRT* rewires accordingly.
124

Proof sketch

Proof idea
Use rewiring operation to show that we reach By, always from Bj.

125

Proof sketch

Question: Do we need the second rewiring step?] 126

Visualization

O

127

Informed optimal planning

Two problems with RRT*

RRT* example

128

Problems with RRT*

Two problems with RRT*

e Does not prioritize paths as A* does

e Once path is found, it still samples region which cannot improve solution

129

Informed sampling

Informed sampling

e Informed sampling restricts sampling to region which can improve solution

e Based upon concept of Omniscient set

130

Informed sampling

Reminder (see Lecture 3)

e Optimal cost-to-come g(x) (minimal cost from start to x)

e Optimal cost-to-go h(x) (minimal cost from x to goal)

e Optimal f-value f(x) = g(x) + h(x) (minimal cost, constrained to go through x)

Definition omniscient set

Let ¢ be the cost of a our current solution. Definition omniscient set:

X={xeQ|f(x)<c}

What does the omniscient set represent?

131

Informed sampling

Definition informed set

Let ¢ be the cost of a our current solution. Definition admissible informed set:

X={xeQl|f(x)<c}

whereby f = g(x) 4 h(x) with h(x) being an admissible heuristic.

132

Informed sampling

Definition L2-informed set

Let ¢ be the cost of a our current solution. Definition admissible informed set:
X = {x € Q| d(xstart, x) + d(x, xgoal) < c}

For the L2-metric, this is called a prolate hyperspheroid

133

Informed sampling

Informed Set

Informed sampling

Informed Set

.
" ymmn®

\ 7 135

Informed sampling

Informed Set

~ 7 136

Informed sampling

Informed Set

Informed sampling

e Informed RRT* uses Informed Sets to sample more efficiently

e BIT* uses a growing informed set to be more efficient in the beginning

JD Gammell et al., "Informed RRT*: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic”, (2014)

JD Gammell et al. "Batch Informed Trees (BIT*): Informed asymptotically optimal anytime search”,
(2020)

138

Batch Informed Trees (BIT*)

BIT* example

e

139

Drawbacks of BIT*
e Only works for shortest path cost

e Only works in euclidean spaces

140

Conclusion

e Asymptotic optimal planning
e Tree-based (RRT, RRT¥*)

e Tree-based motion planning for kindynamic systems

e AO-RRT: Asymptotic optimality using cost extension
e SST*: Asymptotic optimality using forward propagation

141

References i

[1]

2l

8]

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. 1984.

Sertac Karaman and Emilio Frazzoli. “Sampling-Based Algorithms for Optimal
Motion Planning”. In: International Journal of Robotics Research (IJRR) 30.7
(2011), pp. 846-894. DOI: 10.1177/0278364911406761.

Kiril Solovey, Lucas Janson, Edward Schmerling, Emilio Frazzoli, and
Marco Pavone. “Revisiting the Asymptotic Optimality of RRT*". In: IEEE
International Conference on Robotics and Automation (ICRA). May 2020,
pp. 2189-2195. DOI: 10.1109/ICRA40945.2020.9196553.

https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/ICRA40945.2020.9196553

References ii

[4]

[5]

Dan Halperin. Algorithmic Robotics and Motion Planning. 2020. URL:
http://acg.cs.tau.ac.il/courses/algorithmic-robotics/fall-2019-

2020/algorithmic-robotics-and-motion-planning.

Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006. ISBN:
978-0-521-86205-9. URL: http://planning.cs.uiuc.edu.

http://acg.cs.tau.ac.il/courses/algorithmic-robotics/fall-2019-2020/algorithmic-robotics-and-motion-planning
http://acg.cs.tau.ac.il/courses/algorithmic-robotics/fall-2019-2020/algorithmic-robotics-and-motion-planning
http://planning.cs.uiuc.edu

	Tree-based motion planning
	Introduction to Asymptotic Optimality Planning
	Cost framework

	Optimal tree-based motion planning
	Probabilistic completeness proof RRT
	Asymptotically optimal proof RRT*

	Informed optimal planning
	Appendix

