
Motion Planning Lecture 7

Kinodynamic Planning: kinodynamic RRT, SST*, AO-x

Geometric Planning: RRT-Connect, EST, PRM*

Wolfgang Hönig (TU Berlin) and Andreas Orthey (Realtime Robotics)

June 5, 2024



Recap

• Tree-based motion planning: RRT (probabilistic complete (PC), but suboptimal)

• Asymptotic Optimality (AO)

• RRT* introduces rewiring (probablistic complete and asymptotically optimal)

• Proof sketches

• PC RRT (by induction; series of connectable balls)

• AO RRT* (by induction; use re-wiring to establish correct sequence)

• Informed RRT* and BIT*

1



Optimal kinodynamic planning



Kinodynamic planning

Optimal Kinodynamic Planning 2



Kinodynamic planning

Given

• State space Q and free state space Qfree

• Control space U
• Dynamics q̇(t) = f(q(t),u(t))

• Initial state qstart ∈ Qfree

• Goal region Qgoal ⊂ Qfree

• Cost c = J(T ,u(t),q(t))

Desired

• Trajectory π : [0,T ] → Qfree × U

3



Kinodynamic planning

• Feasible kinodynamic planning: Compute a trajectory π

• Optimal kinodynamic planning: From all feasible trajectories, select the one

which minimizes the cost (we call it π⋆)

4



Optimal kinodynamic planning

Steering vs Forward Propagation

5



Steering vs Forward Propagation

Two variants

Two types of kinodynamic planning depending on information available

• Steering

• Forward propagation

6



Steering vs Propagation

Planners require access to dynamical function f. This can be accomplished in two ways

• Steering: Given two states q, q′, compute controls to move robot from q to q′

• Involves solving a boundary-value problem (BVP)

• Computationally expensive

• Tricky if dynamical constraints are involved

• Forward Propagation: Given a state q, a control u, and a time ∆t, compute the
next state q′ by applying control u for time ∆t

• Simple to compute

• Does not require knowledge of system

• Unclear how to use it for (optimal) planning

7



Steering function

Steering function

Planning with steering functions as generalized interpolation

• Reduction to geometric case

• Any geometric planner can be applied

• PRM, RRT*, or BIT*

8



Forward propagation

Planning with forward propagation

• Difficult: Unclear how to exploit forward propagation

• How to make this optimal?

• Optimal kinodynamic motion planning: Naive random trees and SST*

9



Optimal kinodynamic planning

Meta algorithm

10



Meta Algorithm (for kinodynamic planning with forward propagation)

Meta(qstart , Qgoal , Q, U , f, tprop)

• T = InitializeTree(qstart)

• While Not Terminated

• qselect = SelectNode(T, Q)

• qnew = Propagate(qselect , U , f, tprop)
• MaybeAddConnection(qselect , qnew )

Note: In practice, we would terminate either after N iterations, or when a path is

found, or when a certain cost is reached, etc. For the theoretical analysis, however, we

assume that the algorithm will not terminate (asymptotic optimality can only be

reached in the limit).

11



Meta Algorithm

Select Node

• Uniform Selection: Pick a node from the graph at random

• Exploration First: Pick a node which increases explorative nature of algorithm

(cover state space as quickly as possible)

• Best First: Pick a node on a high-quality path

Propagate Node

MaybeAddConnection

12



Meta Algorithm

Select Node

Propagate Node

• Fixed Duration: Pick random controls, then apply them for a fixed time tprop

• Monte-Carlo: Pick random control and random time, then propagate system

forward

• Guided Monte-Carlo (”shooting” method): Select random target state. Sample k

controls and k times. Propagate them forward and select the node nearest to

target as return value.

MaybeAddConnection

12



Meta Algorithm

Select Node

Propagate Node

MaybeAddConnection

• Collision-free: Add connection if no collision occured

• Prune dominated: Add connection if collision free and locally having the best

cost.

12



Meta Algorithm

Instantiations of Meta algorithm

Algorithms differ in how they implement the three modules ”Select Node”, ”Propagate

Node”, and ”MaybeAddConnection”.

• Kinodynamic RRT (kRRT)

• Naive Random Trees (NRT)

• Stable sparse trees (SST*)

13



Optimal kinodynamic planning

Kinodynamic RRT

14



Kinodynamic RRT

Kinodynamic RRT

• Select Node: Exploration First Selection

• Propagate Node: Guided Monte Carlo Propagation

• Maybe add connection: Collision-Free Checking

15



Kinodynamic RRT

Select Node

16



Kinodynamic RRT

Select Node

17



Kinodynamic RRT

Select Node

18



Kinodynamic RRT

Propagate Node

19



Kinodynamic RRT

Propagate Node

20



Kinodynamic RRT

Propagate Node

21



Kinodynamic RRT

Propagate Node

22



Kinodynamic RRT

Propagate Node

23



Kinodynamic RRT

Propagate Node

24



Kinodynamic RRT

Propagate Node

25



Kinodynamic RRT

Propagate Node

26



Kinodynamic RRT

Maybe Add Connection

27



Kinodynamic RRT

Maybe Add Connection

28



Kinodynamic planning

Properties

Kinodynamic RRT is probabilistically complete*

*For specific classes of dynamical systems.

LaValle and Kuffner, ”Randomized Kinodynamic Planning”, 2001

Kleinbort et al., ”Probabilistic completeness of RRT for geometric and kinodynamic planning with

forward propagation”, 2022

29



Kinodynamic planning

Small-space local controllability (SSLC) property

30



Kinodynamic planning

Small-space local controllability property

31



Kinodynamic planning

Small-space local controllability property

32



Kinodynamic planning

Small-space local controllability property

33



Kinodynamic planning

Small-space local controllability property

34



Kinodynamic planning

Small-space local controllability property

35



Kinodynamic planning

Small-space local controllability property

Small-space local controllability property: Any configuration q′ at a distance less than

δ is reachable from q by an admissible trajectory included in a ball of size ϵ > δ. 36



Kinodynamic planning

Series-of-balls argument in kinodynamic planning

37



Kinodynamic planning

Series-of-balls argument in kinodynamic planning

38



Kinodynamic planning

Series-of-balls argument in kinodynamic planning

39



Kinodynamic planning

Series-of-balls argument in kinodynamic planning

40



Kinodynamic planning

Series-of-balls argument in kinodynamic planning

41



Kinodynamic planning

Series-of-balls argument in kinodynamic planning

42



Kinodynamic planning

Series-of-balls argument in kinodynamic planning

43



Kinodynamic planning

Series-of-balls argument in kinodynamic planning

44



Kinodynamic planning

Question

Is kinodynamic RRT also asymptotically optimal?

45



Optimal kinodynamic planning

Naive Random Trees

46



Naive Random Trees

Naive Random Trees

• Select Node:

Uniform Selection

• Propagate Node:

Monte Carlo

• Maybe add connection:

Collision-Free Checking

Source: [1]

47



Naive Random Trees

Select Node

48



Naive Random Trees

Select Node

49



Naive Random Trees

Propagate Node

50



Naive Random Trees

Propagate Node

51



Naive Random Trees

Properties

Naive Random Trees is asymptotically optimal

Question

Why is that so?

Y Li, Z Littlefield, KE Bekris, ”Asymptotically Optimal Sampling-based Kinodynamic Planning”,

2016

52



Naive Random Trees

Proof sketch

53



Naive Random Trees

Proof sketch

54



Naive Random Trees

Proof sketch

55



Naive Random Trees

Drawbacks

• Selection of nodes uninformative

• High memory footprint

56



Optimal kinodynamic planning

Stable sparse trees (SST*)

57



Sparse Stable Trees (SST)

Sparse stable trees (SST*)

• Select Node: Best First Selection

• Propagate Node: Monte Carlo

• Maybe add connection: Collision-Free Checking + Pruning

SST = Naive random trees with better selection and pruning

58



Sparse Stable Trees (SST): Best First Selection

• Select node with lowest cost-to-come within a neighborhood

Source: [1]

59



Sparse Stable Trees (SST)

SST Pruning

Pruning based on Witness set

Witness Set

Set of states (S ⊂ Q) used as helper data structure.

Invariant for each s ∈ S: only a single node of the search tree within radius δS represents

that state s and has best path cost from root.

60



Sparse Stable Trees (SST)

Witness set: Search tree

61



Sparse Stable Trees (SST)

Witness set: witnesses s ∈ S in yellow

62



Sparse Stable Trees (SST)

Witness set

Adding connections

63



Sparse Stable Trees (SST)

Adding connection: Case 1 - No witness

64



Sparse Stable Trees (SST)

Adding connection: Case 1 - No witness

65



Sparse Stable Trees (SST)

Adding connection: Case 2 - Existing witness

66



Sparse Stable Trees (SST)

Adding connection: Case 2 - Existing witness

67



Sparse Stable Trees (SST)

Adding connection: Case 2 - Existing witness

68



Sparse Stable Trees (SST)

Adding connection: Case 2a - Better cost

69



Sparse Stable Trees (SST)

Adding connection: Case 2b - Worse cost

70



Sparse Stable Trees (SST)

Subtree pruning

71



Sparse Stable Trees (SST)

Subtree pruning

72



Sparse Stable Trees (SST)

Subtree pruning

73



Sparse Stable Trees (SST)

Subtree pruning

74



Sparse Stable Trees (SST)

Subtree pruning

75



Sparse Stable Trees (SST)

Subtree pruning

76



Sparse Stable Trees (SST)

Subtree pruning

77



Sparse Stable Trees (SST)

Subtree pruning

78



Sparse Stable Trees (SST)

Properties

Sparse Stable Trees (SST*) is asymptotically near-optimal (AnO)

Asymptotically near-optimal

Planner finds a solution with cost at most (1 + ϵ)c∗

Y Li, Z Littlefield, KE Bekris, ”Asymptotically Optimal Sampling-based Kinodynamic Planning”,

2016

79



Sparse Stable Trees (SST)

Advantages

• Selection always picks a locally optimal node

• Memory footprint is minimized

Drawbacks

• Need to choose a good δS for the witness radii

• AnO, not AO

80



Sparse Stable Trees (SST)

Advantages

• Selection always picks a locally optimal node

• Memory footprint is minimized

Drawbacks

• Need to choose a good δS for the witness radii

• AnO, not AO

80



Optimal kinodynamic planning

AO-x

81



AO-x [2]

• AO-x is a meta algorithm

• Input is any feasible kinodynamic planner

• Idea: Convert the bounded-suboptimal version of optimal kinodynamic planning

into a feasible kinodynamic problem

• Then iterate: Solve bounded-suboptimal version, compute best cost found, setup

new bounded-suboptimal version with this cost, etc

82



State-Cost Space

• Augment configuration space

Q with a real cost dimension:

Q′ = Q× R+
0

• Augment dynamics f, where

q′ = (q, c):

f ′(q′,u) =
(
f(q,u),∆c

)

83



AO-x: Pseudo Code [2]

• A is typically (kinodynamic) RRT or EST

• Pc̄ is a problem instance with cost bound c̄

84



AO-x: Proof of asymptotic optimality (AO)

Assumptions

1. A terminates in finite time, if solution within given bound c̄ exists

2. A reduces cost by a nonnegligible amount.

E [c(yi )|c̄]− c∗ ≤ (1− ω)(c̄ − c∗) for ω > 0,

where c∗ is the optimal cost and c̄ the cost limit

85



AO-x: Proof of asymptotic optimality (AO)

Proof Goal

Let S0, . . . ,Sn be random variables for c(yi )− c∗. Then for any ϵ > 0 we have:

lim
n→∞

P(Sn ≥ ϵ) = 0

Proof helpers:

• Markov inequality: P(Sn ≥ ϵ) ≤ E [Sn]/ϵ

• Assumption 2 (cost reduction by nonnegligible amount): E [Sn|sn−1] ≤ (1−ω)sn−1

86



AO-x: Proof of asymptotic optimality (AO)

Use E [Sn|sn−1] ≤ (1− ω)sn−1:

E [Sn] =

∫
E [Sn|sn−1]P(sn−1)dsn−1

≤
∫
(1− ω)sn−1P(sn−1)dsn−1

= (1− ω)

∫
sn−1P(sn−1)dsn−1

= (1− ω)E [Sn−1]

= (1− ω)nE [S0]

Use Markov inequality:

P(Sn ≥ ϵ) ≤ E [Sn]/ϵ

P(Sn ≥ ϵ) ≤ (1− ω)nE [S0]/ϵ

Take the limit:

lim
n→∞

P(Sn ≥ ϵ) ≤ (1− ω)nE [S0]/ϵ

= 0

87



AO-x: Proof of asymptotic optimality (AO)

Use E [Sn|sn−1] ≤ (1− ω)sn−1:

E [Sn] =

∫
E [Sn|sn−1]P(sn−1)dsn−1

≤
∫
(1− ω)sn−1P(sn−1)dsn−1

= (1− ω)

∫
sn−1P(sn−1)dsn−1

= (1− ω)E [Sn−1]

= (1− ω)nE [S0]

Use Markov inequality:

P(Sn ≥ ϵ) ≤ E [Sn]/ϵ

P(Sn ≥ ϵ) ≤ (1− ω)nE [S0]/ϵ

Take the limit:

lim
n→∞

P(Sn ≥ ϵ) ≤ (1− ω)nE [S0]/ϵ

= 0

87



AO-x: Proof of asymptotic optimality (AO)

Use E [Sn|sn−1] ≤ (1− ω)sn−1:

E [Sn] =

∫
E [Sn|sn−1]P(sn−1)dsn−1

≤
∫
(1− ω)sn−1P(sn−1)dsn−1

= (1− ω)

∫
sn−1P(sn−1)dsn−1

= (1− ω)E [Sn−1]

= (1− ω)nE [S0]

Use Markov inequality:

P(Sn ≥ ϵ) ≤ E [Sn]/ϵ

P(Sn ≥ ϵ) ≤ (1− ω)nE [S0]/ϵ

Take the limit:

lim
n→∞

P(Sn ≥ ϵ) ≤ (1− ω)nE [S0]/ϵ

= 0

87



AO-x

Advantages

• Planner agnostic

• Enhances theoretical properties (AO)

Drawbacks

• By default, no re-use of data between iterations

• Unknown convergence rate (rather poor empirically)

88



AO-x

Advantages

• Planner agnostic

• Enhances theoretical properties (AO)

Drawbacks

• By default, no re-use of data between iterations

• Unknown convergence rate (rather poor empirically)

88



More Tree-based Geometric Motion

Planning: EST, RRT-Connect



EST: Expansive Space Trees (1) [4]

• Key insight: use explicit function rather than Voronoi bias for exploration

1 def EST(Q,Wfree ,B(·),qstart ,Qgoal):

2 T = (V, E) = ({qstart}, ∅)
3 while True:

4 q =randomly choose from V with

probability πT (q)↪→

5 p = random configuration near q

6 if path q to p feasible:

7 V = V ∪ {p}
8 E = E ∪ {path q to p}
9 if p ∈ Qgoal:

10 return solution

Source: [3]

89



EST: Expansive Space Trees (1) [4]

• Key insight: use explicit function rather than Voronoi bias for exploration

1 def EST(Q,Wfree ,B(·),qstart ,Qgoal):

2 T = (V, E) = ({qstart}, ∅)
3 while True:

4 q =randomly choose from V with

probability πT (q)↪→

5 p = random configuration near q

6 if path q to p feasible:

7 V = V ∪ {p}
8 E = E ∪ {path q to p}
9 if p ∈ Qgoal:

10 return solution

Source: [3]

89



EST: Expansive Space Trees (1) [4]

• Key insight: use explicit function rather than Voronoi bias for exploration

1 def EST(Q,Wfree ,B(·),qstart ,Qgoal):

2 T = (V, E) = ({qstart}, ∅)
3 while True:

4 q =randomly choose from V with

probability πT (q)↪→

5 p = random configuration near q

6 if path q to p feasible:

7 V = V ∪ {p}
8 E = E ∪ {path q to p}
9 if p ∈ Qgoal:

10 return solution

Source: [3]

89



EST: Expansive Space Trees (1) [4]

• Key insight: use explicit function rather than Voronoi bias for exploration

1 def EST(Q,Wfree ,B(·),qstart ,Qgoal):

2 T = (V, E) = ({qstart}, ∅)
3 while True:

4 q =randomly choose from V with

probability πT (q)↪→

5 p = random configuration near q

6 if path q to p feasible:

7 V = V ∪ {p}
8 E = E ∪ {path q to p}
9 if p ∈ Qgoal:

10 return solution

Source: [3]

89



EST: Expansive Space Trees (1) [4]

• Key insight: use explicit function rather than Voronoi bias for exploration

1 def EST(Q,Wfree ,B(·),qstart ,Qgoal):

2 T = (V, E) = ({qstart}, ∅)
3 while True:

4 q =randomly choose from V with

probability πT (q)↪→

5 p = random configuration near q

6 if path q to p feasible:

7 V = V ∪ {p}
8 E = E ∪ {path q to p}
9 if p ∈ Qgoal:

10 return solution

Source: [3]

89



EST: Expansive Space Trees (2)

• Choice of probability density function πT (q): Good exploration of Qfree , e.g.,

proportional to dispersion

• πT (q) often changes during the search

Online Dispersion Estimation

• Discretize Q in a grid

• Count the number of q ∈ V that belong to each grid cell

• Probability πT (q) is inverse proportional to the number corresponding to the grid

cell of q

EST Main Challenge

Difficult to define πT (q) efficiently.

90



EST: Expansive Space Trees (2)

• Choice of probability density function πT (q): Good exploration of Qfree , e.g.,

proportional to dispersion

• πT (q) often changes during the search

Online Dispersion Estimation

• Discretize Q in a grid

• Count the number of q ∈ V that belong to each grid cell

• Probability πT (q) is inverse proportional to the number corresponding to the grid

cell of q

EST Main Challenge

Difficult to define πT (q) efficiently.

90



EST: Expansive Space Trees (2)

• Choice of probability density function πT (q): Good exploration of Qfree , e.g.,

proportional to dispersion

• πT (q) often changes during the search

Online Dispersion Estimation

• Discretize Q in a grid

• Count the number of q ∈ V that belong to each grid cell

• Probability πT (q) is inverse proportional to the number corresponding to the grid

cell of q

EST Main Challenge

Difficult to define πT (q) efficiently.

90



RRT-Connect (1) [5]

• Bidirectional search: Use two trees: one rooted at qstart , one rooted at qgoal

• Try to connect both trees

91



RRT-Connect (2)

Source: [6]

• Sample qrand and Extend the goal tree (right side)

92



RRT-Connect (3)

Source: [6]

• qtarget is now the goal for the init tree (left side)

93



RRT-Connect (4)

Source: [6]

• Calculate qnear (closest node to qtarget in init tree)

94



RRT-Connect (5)

Source: [6]

• Try to connect qnear and qtarget

95



RRT-Connect (5)

Source: [6]

• Try to connect qnear and qtarget

95



RRT-Connect (5)

Source: [6]

• Try to connect qnear and qtarget

95



RRT-Connect (5)

Source: [6]

• Try to connect qnear and qtarget

95



RRT-Connect (5)

Source: [6]

• Try to connect qnear and qtarget

95



RRT-Connect (6)

Source: [6]

• Solution is the path connecting qinit and qgoal

96



RRT-Connect (7)

Pseudo-Code from the original paper:

Source: [5]

What is the purpose of SWAP

here?

97



RRT-Connect (7)

Pseudo-Code from the original paper:

Source: [5]

What is the purpose of SWAP

here?

97



RRT-Connect Examples (1)

Source: [5]

98



RRT-Connect Examples (2)

Source: [5]

99



RRT-Connect Examples (3)

Source: [5]

100



Asymptotic Optimal Geometric

Motion Planning: PRM*



PRM*

1 def GenPRM(Q,Wfree ,B(·),N):

2 # ...

3 for q in V:
4 for p in {p ∈ V : isNeighbor(p,q)}:
5 if path q to p feasible:

6 E = E ∪ {path q to p}
7 return G

• Pseudo code from [7]

• Consistent with our previous

pseudo code of PRM (lecture

5)

• Neighbors are computed

using the dynamic radius,

depending on |V|

How does this work for parallel

pre-processing and query?

101



PRM*

1 def GenPRM(Q,Wfree ,B(·),N):

2 # ...

3 for q in V:
4 for p in {p ∈ V : isNeighbor(p,q)}:
5 if path q to p feasible:

6 E = E ∪ {path q to p}
7 return G

• Pseudo code from [7]

• Consistent with our previous

pseudo code of PRM (lecture

5)

• Neighbors are computed

using the dynamic radius,

depending on |V|

How does this work for parallel

pre-processing and query?

101



PRM*

1 def GenPRM(Q,Wfree ,B(·),N):

2 # ...

3 for q in V:
4 for p in {p ∈ V : isNeighbor(p,q)}:
5 if path q to p feasible:

6 E = E ∪ {path q to p}
7 return G

• Pseudo code from [7]

• Consistent with our previous

pseudo code of PRM (lecture

5)

• Neighbors are computed

using the dynamic radius,

depending on |V|

How does this work for parallel

pre-processing and query?

101



PRM*

1 def GenPRM(Q,Wfree ,B(·),N):

2 # ...

3 for q in V:
4 for p in {p ∈ V : isNeighbor(p,q)}:
5 if path q to p feasible:

6 E = E ∪ {path q to p}
7 return G

• Pseudo code from [7]

• Consistent with our previous

pseudo code of PRM (lecture

5)

• Neighbors are computed

using the dynamic radius,

depending on |V|

How does this work for parallel

pre-processing and query?

101



Conclusion

• Kinodynamic planners: kinodynamic RRT/EST, SST(*), AO-x

• Geometric planners: EST, RRT-Connect, PRM*

Next Time

• Open Motion Planning Library (OMPL)

102



Suggested Reading

1. Yanbo Li, Zakary Littlefield, and Kostas E. Bekris. “Asymptotically Optimal Sampling-Based

Kinodynamic Planning”. In: I. J. Robotics Res. 35.5 (2016), pp. 528–564. doi:

10.1177/0278364915614386

2. Kris Hauser and Yilun Zhou. “Asymptotically Optimal Planning by Feasible Kinodynamic

Planning in a State-Cost Space”. In: IEEE Trans. Robotics 32.6 (2016), pp. 1431–1443. doi:

10.1109/TRO.2016.2602363

103

https://doi.org/10.1177/0278364915614386
https://doi.org/10.1109/TRO.2016.2602363


References i

[1] Yanbo Li, Zakary Littlefield, and Kostas E. Bekris. “Asymptotically Optimal

Sampling-Based Kinodynamic Planning”. In: I. J. Robotics Res. 35.5 (2016),

pp. 528–564. doi: 10.1177/0278364915614386.

[2] Kris Hauser and Yilun Zhou. “Asymptotically Optimal Planning by Feasible

Kinodynamic Planning in a State-Cost Space”. In: IEEE Trans. Robotics 32.6

(2016), pp. 1431–1443. doi: 10.1109/TRO.2016.2602363.

[3] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor,

Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot

Motion: Theory, Algorithms, and Implementations. Intelligent Robotics and

Autonomous Agents Series. Cambridge, MA, USA: A Bradford Book, 2005.

630 pp. isbn: 978-0-262-03327-5.

https://doi.org/10.1177/0278364915614386
https://doi.org/10.1109/TRO.2016.2602363


References ii

[4] D. Hsu, J.-C. Latombe, and R. Motwani. “Path Planning in Expansive

Configuration Spaces”. In: International Conference on Robotics and Automation.

Vol. 3. Apr. 1997, 2719–2726 vol.3. doi: 10.1109/ROBOT.1997.619371.

[5] J.J. Kuffner and S.M. LaValle. “RRT-Connect: An Efficient Approach to

Single-Query Path Planning”. In: International Conference on Robotics and

Automation. Vol. 2. Apr. 2000, 995–1001 vol.2. doi:

10.1109/ROBOT.2000.844730.

[6] Dmitry Berenson. “Motion Planning: Robotics and Beyond”. In: (2021). url:

https://web.eecs.umich.edu/~dmitryb/courses/

winter2021motionplanning/index.html.

https://doi.org/10.1109/ROBOT.1997.619371
https://doi.org/10.1109/ROBOT.2000.844730
https://web.eecs.umich.edu/~dmitryb/courses/winter2021motionplanning/index.html
https://web.eecs.umich.edu/~dmitryb/courses/winter2021motionplanning/index.html


References iii

[7] Sertac Karaman and Emilio Frazzoli. “Sampling-Based Algorithms for Optimal

Motion Planning”. In: International Journal of Robotics Research (IJRR) 30.7

(2011), pp. 846–894. doi: 10.1177/0278364911406761.

https://doi.org/10.1177/0278364911406761

	Optimal kinodynamic planning
	Steering vs Forward Propagation
	Meta algorithm
	Kinodynamic RRT
	Naive Random Trees
	Stable sparse trees (SST*)
	AO-x

	More Tree-based Geometric Motion Planning: EST, RRT-Connect
	Asymptotic Optimal Geometric Motion Planning: PRM*
	Appendix

