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Recap (1)

Foundations

2 Weeks (problem formulation, terminology, collision checking)

Search-based

2 Weeks (A* and variants;

state-lattice-based plan-

ning)

Sampling-based

5 Weeks (RRT, PRM,

OMPL, Sampling Theory)

Optimization-based

2.5 Weeks (Splines,

CHOMP, SCP)

Current and Advanced Topics

1.5 Weeks (Comparative Analysis, Machine Learning and Motion Planning, Hybrid- and

Multi-Robot approaches)
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Recap (2)

� Post-processing / Smoothing of existing solutions:

� Shortcutting (gradient-free)

� Splines (B-Splines)

� Geometric Motion Planning

� Spline Optimization (Polynomials, Bézier Curves)

� CHOMP (Optimization on Signed Distance Fields)

Today

Kinodynamic Motion Planning

� Splines by using differential flatness

� Sequential Convex Programming (SCP)
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Geometric to Kinodynamic Motion

Planning via Differential Flatness



Differential Flatness

� Observation: Splines have a temporal component and are smooth

� Can we use them for kinodynamic motion planning?

Differentially Flat System

A robot with dynamics q̇ = f(q,u) is differentally flat if we can find flat outputs z(t)

such that:

q(t) = gq(z, ż, z̈, . . .)

u(t) = gu(z, ż, z̈, . . .).

That is, we can compute the configuration and action sequence from z(t) and a finite

number of derivatives of z(t).
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Differential Flatness Example (1)

Unicycle

u = (s, ω) ∈ U (speed, angular velocity)

and q = (x , y , θ) ∈ Q (position and orien-

tation) The dynamics q̇ = f(q,u) are:

ẋ = s cos θ ẏ = s sin θ θ̇ = ω
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Differential Flatness Example (2)

Unicycle

The dynamics q̇ = f(q,u) are:

ẋ = s cos θ ẏ = s sin θ θ̇ = ω

Pick flat outputs z(t) = (x , y), i.e., the position of the unicycle.
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ẏ2

ẋ2
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ẋ

)
=
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Differential Flatness Example (3)

Unicycle

The dynamics q̇ = f(q,u) are:

ẋ = s cos θ ẏ = s sin θ θ̇ = ω

Pick flat outputs z(t) = (x , y), i.e., the position of the unicycle. Then we can compute

q(t) = gq(z, ż) =

(
x , y , arctan

(
ẏ

ẋ

))
u(t) = gu(ż, z̈) =

(
±
√
ẏ2 + ẋ2,

ẋ ÿ − ẏ ẍ

ẋ2 + ẏ2

)

How does this help for kinodynamic motion planning?
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Differential Flatness Applications

� We can plan a smooth trajectory for z(t). By applying gq and gu, we can

compute the configuration and action sequences for the original motion planning

problem!

� If z(t) is lower-dimensional, the planning problem is simplified.

Many robotic systems are differentially flat:

� Unicycle

� Omnidirectional robots

� Differential drive (e.g, Roomba)

� Multirotor

� Car (even when pulling k trailers)
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Case Study: Multirotors [1]

Multirotor

� Configuration space: 12+ dimensions

(position, orientation, velocity, angular

velocity)

� Action space: 4+ dimensions (angular velocity

of each propeller)

� Flat output z(t) = (x , y , z , ψ), i.e., only 4

dimensions (position and yaw angle)

Sufficient to optimize polynomial splines for x , y , z , and ψ, even for aggressive

maneuvers.
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Video

https://doi.org/10.1109/ICRA.2011.5980409
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Differential Flatness Challenges (1)

How can we handle obstacles?

If z(t) contains the position, we can handle it like before (e.g., adding additional way-

points for polynomials or using Bézier splines).

How can we handle dynamic constraints (e.g., maximum speed limit)?

Unicycle: s(z) = ±
√

ẏ2 + ẋ2

We need to ensure that ż is bounded appropriately! This can by done by temporal

scaling as postprocessing.
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Temporal Scaling (1)

Polynomial

p(t) =
n∑

k=0

akt
k t ∈ [0, 1]

� Consider a time horizon T , i.e., t ∈ [0,T ]:

p̃(t) =
n∑

k=0

ak

( t

T

)k

=
n∑

k=0

ak
T k

tk =
n∑

k=0

ãkt
k where ãk =

ak
T k

� Time derivative for cubic spline:

p̃′(t) = ã1 + 2ã2t + 3ã3t
2 =

a1
T

+ 2
a2
T 2

t + 3
a3
T 3

t2

� The derivative gets smaller for T > 1:

lim
T→∞

p̃′(t) = 0
11



Temporal Scaling (2)

1 def temporalScaling():

2 z(t) = solveQP() # use arbitrary T

3 while True:

4 max_mag =

computeMaxDerivativeMagnitude(z)↪→

5 if lower_bound > max_mag: # too slow

6 decrease(T)

7 elif upper_bound < max_mag: # too fast

8 increase(T)

9 else:

10 return z(t)

11 z(t) = UpdateCoefficients(z(t), T)

� Binary search on T can

be an efficient way, if

stepsize of T is unknown

� Rescaling is fast, since

rescaling is just updating

the coefficients

� Computing the maximum

magnitude is “costly”

(numeric methods)

� Similar approach for

Bézier curves
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Temporal Scaling (3)

1 def temporalScaling():

2 z(t) = solveQP() # use arbitrary T

3 while True:

4 max_mag =

computeMaxDerivativeMagnitude(z)↪→

5 if lower_bound > max_mag: # too slow

6 decrease(T)

7 elif upper_bound < max_mag: # too fast

8 increase(T)

9 else:

10 return z(t)

11 z(t) = UpdateCoefficients(z(t), T)

What can happen if we plan

for a 2D plane (unicycle

with minimum and maximum

speed)?

There might be no feasible

T !
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Differential Flatness Challenges (2)

The optimization might not minimize the cost we want.

� For the optimization, we might minimize a component of z(t) (or derivatives

thereof)

� For our motion planning problem, we might have a different objective, e.g.,

J = T
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Differential Flatness Summary

1. Verify that your robot has differentially flatness in the workspace

2. Optimize collision-free splines in workspace (polynomial or Bézier) (QP, i.e.,

efficient and global optimal solution)

3. Temporally scale to obey dynamic limits (e.g., maximum speed)

4. Extract q(t) and u(t) from the spline or use a differentially-flat controller
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Differential Flatness Summary (2)

Optimization:

argmin
z10,...z

1
n,...,z

m
0 ,...z

m
n

m∑
k=1

∫ 1

t=0
z̈k(t)dts.t.

zk0 , . . . z
k
n ∈ SafeConvexRegion(k) ∀k ∈ {1, . . . ,m}

z10 = g−1
q (qstart)

zmn = g−1
q (qgoal)

zk(1) = zk+1(0), żk(1) = żk+1(0), z̈k(1) = z̈k+1(0), . . .∀k ∈ {1, . . . ,m − 1}
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Sequential Convex Programming

(SCP)



Motivation

� Consider a 2D double integrator q = (x , y , vx , vy ), u = (ax , ay ),

q̇ = f(q,u) = (vx , vy , ax , ay )

Kinodynamic Motion Planning

argmin
T ,u(t),q(t)

J(T ,u(t),q(t)) s.t.

q(0) = qstart q(T ) = qgoal

B(q(t)) ⊂ Wfree ∀t ∈ [0,T ]

q̇(t) = f(q(t),u(t)) ∀t ∈ [0,T )

Discrete-Time Optimization

argmin
u0,...uT−1;q0,...qT

T∑
k=1

∥uk∥2 s.t.

q0 = qstart qT = qgoal

qk ≥ qmin qk ≤ qmax ∀k = 0, . . . ,T

qk+1 = qk + f(qk ,uk)∆t ∀k = 0, . . . ,T − 1

uk ≥ umin uk ≤ umax ∀k = 0, . . . ,T − 1

Linear constraints; quadratic cost ⇒ convex (QP)
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Nonlinear Dynamics

Car Dynamics

u = (s, ϕ) ∈ U (speed, steering wheel angle)

q = (x , y , θ) ∈ Q (position and orientation)

The dynamics q̇ = f(q,u) are:

ẋ = s cos θ ẏ = s sin θ θ̇ =
s

L
tanϕ

Dynamics constraint is not convex!

qk+1 = qk + f(qk ,uk)∆t

= qk + [s cos θ, s sin θ,
s

L
tanϕ]∆t
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Linearizing Dynamics

If we have a guess q̄ and ū, we can linearize around those using the first order Taylor

expansion:

q̇ = f(q,u)

≈ f(q̄, ū) +
∂

∂q
f(q̄, ū)(q− q̄) +

∂

∂u
f(q̄, ū)(u− ū)

Car Dynamics

f(q,u) =

 s cos θ

s sin θ
s
L tanϕ

 ∂

∂q
f =

0 0 −s sin θ

0 0 s cos θ

0 0 0

 ∂

∂u
f =

 cos θ 0

sin θ 0
1
L tanϕ

s
L cos2 ϕ


∂
∂q f(q̄, ū) is

∂
∂q f evaluated at q̄, ū, i.e., a static matrix
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Sequential Convex Programming (SCP)

1 def basicSCP():

2 x_bar, u_bar = InitialGuess()

3 while x_bar, u_bar not valid:

4 dyn = LinearizeDynamics(x_bar, u_bar)

5 CP = ConstructConvexProblem(dyn, ...)

6 x_bar, u_bar = Solve(CP)

Challenges of the basic version:

1. Linearized dynamics are only valid around q̄, ū ⇒ add trust region constraints:

q̄k − rq ≤ qk ≤ q̄k + rq ∀k = 0, . . . ,T

ūk − ru ≤ uk ≤ ūk + ru ∀k = 0, . . . ,T − 1

2. CP might be infeasible (even if nonlinear original formulation is feasible) ⇒ use

soft constraints (with slack variables), rather than hard constraints
20



Sequential Convex Programming (SCP)

Source: [2]
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Sequential Convex Programming (SCP): Case Study

Source: [2]

Demo: https://github.com/UW-ACL/SCPToolbox_tutorial
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Practical Tips

� Computing Jacobians is mechanical, yet error-prone. Let a computer do it!

� sympy, Wolfram Alpha, Mathematica if you need an analytic expression

� jax, pytorch if you need a numeric expression at a specific point (like in SCP)

� A Julia Toolbox with examples is available at:

https://github.com/UW-ACL/SCPToolbox.jl

Will SCP converge to a global minimum?

No, since we linearize around an initial guess.
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Sequential Convex Programming and Obstacles (1)

� Spline optimization and obstacles: add waypoints or use Bézier curves

� SCP: ?

Signed Distance

Source: [3]

� Let A be a robot and B an obstacle

� Positive: non-overlapping; length of

the smallest translation T that puts

the two shapes in contact

� Negative: overlapping; length of the

smallest translation that takes the two

shapes out of contact

� pA ∈ A and pB ∈ B are the contact

points
24



Signed Distance

� FCL can efficiently compute pA, pB and sd

� set enable nearest points in DistanceRequest to

true

� Define contact normal

n =


pA−pB

∥pA−pB∥ sd > 0

pB−pA
∥pB−pA∥ sd ≤ 0

� Then:

sd = n · (pA − pB)

pA

pB

pA

pB
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Signed Distance

The robot is moving!

Thus, signed distance depends on configuration q:

sd(q) = n(q) · (pA(q)− pB).

� Assume n and pB are static

Strong assumption that is common in research [3, 4].

� If we have a guess q̄, we can linearize around it using the first order Taylor

expansion:

sd(q) ≈ sd(q̄) +
∂

∂q
sd(q̄)(q− q̄)

= sd(q̄) + n⊤
∂

∂q
pA(q̄)(q− q̄) 26



Sequential Convex Programming and Obstacles (2)

x

y

0 1 2 3 4
0

1

2

3

4

O1

R
pA pB

� Step 1: Compute contact points and sd (e.g.

FCL):

pA ≈ [1.45, 1.78]⊤

pB ≈ [2.55, 1.22]⊤

sd =
√
5− 1 ≈ 1.23

� Step 2: Compute normal vector between

contact points:

n =


pA−pB

∥pA−pB∥ sd > 0

pB−pA
∥pB−pA∥ sd ≤ 0

=
[−2, 1]⊤√

5
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Sequential Convex Programming and Obstacles (3)

x

y

0 1 2 3 4
0

1

2

3

4

O1

R
pA pB

� Step 3: Linearize around current state q̄

sd(q) ≈ sd(q̄) + n⊤
∂

∂q
pA(q̄)(q− q̄)

= 1.23 +
[−2, 1]√

5

∂

∂q
pA(q̄)(q− q̄)

What is the partial derivative?

pA(q) is the transformation of the robot-local

point pLA into the global/common coordinate

system:

pA(q) = T L→W (q) · pLA
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Sequential Convex Programming and Obstacles (4)

Double Integrator

R
pA

State q = [x , y , ẋ , ẏ ]⊤ = [1, 2, 0, 0]⊤

pA = [1.45, 1.78]⊤

pLA = [xL, yL]
⊤ = [0.45,−0.22]⊤

pA(x , y , ẋ , ẏ) = [xL + x , yL + y ]⊤

Only “extract” the position part of q:

∂

∂q
pA =

[
1 0 0 0

0 1 0 0

]

Car-like Robot

R

pA

State q = [x , y , θ]⊤

pA(x , y , θ) =

[
xL cos(θ)− yL sin(θ) + x

xL sin(θ) + yL cos(θ) + y

]

Exercise

∂

∂q
pA =

[
1 0 ?

0 1 ?

]
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Sequential Convex Programming and Obstacles (5)

x

y

0 1 2 3 4
0

1

2

3

4

O1

R
pA pB

Assume double integrator

� Step 3: Linearize around current state

q̄ = [1, 2, 0, 0]⊤

sd(q) ≈ sd(q̄) + n⊤
∂

∂q
pA(q̄)(q− q̄)

= 1.23 +
[−2, 1]√

5

[
1 0 0 0

0 1 0 0

]
(q− [1, 2, 0, 0]⊤)

Sanity Checks

� Dimensions (1, 2)× (2, 4)× (4, 1)

� q → [2, 2, 0, 0]⊤ ⇒ sd = 0.35

� q → [0, 2, 0, 0]⊤ ⇒ sd = 2.12
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Sequential Convex Programming and Obstacles (6)

� Step 4: Add linear constraint of form sd(q) ≥ 0

� Step 5: Repeat for each obstacle and timestep (i.e., (T + 1) · (|O|) constraints)

If obstacles are not convex...
... split into the union of convex obstacles first.
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SCP and Time-Optimal Planning

Approach 1 (Naive)

1. Solve SCP with arbitrary guess

2. Reduce T , use (interpolated) result

as initial guess

3. Repeat, until SCP becomes infeasible

Issues?
� Does not work with arbitrary

dynamics (e.g., airplane)

� Potentially slow

� Difficult initial guess

Approach 2

Can we add ∆t as a decision variable?

qk+1 = qk + f (qk ,uk)∆t

≈ qk + (f (q̄k , ūk)+

A(qk − q̄k) + B(uk − ūk))∆t

(A, B are fixed Jacobian matrices)

Quadratic constraint!

Trick
qk+1 = f̃ (qk ,uk ,∆t)

≈ f̃ (q̄k , ūk , ∆̄t) + Ã(qk − q̄k)+

B̃(uk − ūk) + C̃(∆t − ∆̄t)
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Useful Datastructures



OctoMap [5]

� Octree to store occupancy

probability

� Efficient update from noisy

sensor data (LIDAR, RGB-D)

� Very compact map size,

efficient update and query

Demo octovis fr campus.bt
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OctoMap [5]

Why is this useful for optimization-based motion planning?

Each cube is convex, i.e., we can use it for Bézier Curve constraints.

https://octomap.github.io

Faster, newer alternative: UFOMap [6]

34
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VoxBlox [7]

� Directly maintain a Euclidean

Signed Distance Field (ESDF)

from RGB-D data

� Gradient-based optimization

similar to CHOMP for

planning

https://github.com/ethz-asl/voxblox
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Video

https://doi.org/10.1109/IROS.2017.8202315
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Conclusion

� Differential flatness to use geometric motion planning for kinodynamic systems

� Find a mapping from workspace to configuration space

� Works for many robotic systems (car, multirotor, ...)

� Enables very efficient, globally optimal planning (perhaps not for the desired

optimization criteria)

� Sequential Convex Programming (SCP)

� Linearize dynamics, constraints, objective around some solution

� Repeat

� Useful Datastructures: OctoMap and Voxblox

Next Time
� More optimization-based motion planning

� Search / Sampling / Optimization-based motion planning comparison
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1. Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006. isbn:

978-0-521-86205-9. url: http://planning.cs.uiuc.edu, Section 15.5.3

2. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor,

Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot

Motion: Theory, Algorithms, and Implementations. Intelligent Robotics and

Autonomous Agents Series. Cambridge, MA, USA: A Bradford Book, 2005. 630 pp.

isbn: 978-0-262-03327-5, Section 12.5.5

3. Russ Tedrake. Underactuated Robotics. Algorithms for Walking, Running,
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http://underactuated.mit.edu, Chapter 10
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