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Recap Last Week

Last Week

• Optimization-based planning (KOMO)

• Comparison of Search, Optimization, and Sampling

• Hybrid approaches

Today

• Multi-robot motion planning

• Planning with manifold constraints
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Multi-robot navigation
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Multi-robot welding
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Multi-robot assembly
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Coordination of drones
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Multi-robot planning

Multi-robot planning: Coordinate motion of multiple robots acting in the same

environment.

6



Multi-robot planning

Central idea: Multi-robot planning is just planning in the composite configuration space.

Robot state spaces X1,X2,X3, Composite space X = X1 × X2 × X3.

How to adjust primitive methods?

• Sampling

• Interpolation

• Propagation/Steering

• Collision-Checking
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Multi-robot planning

Computational complexity is exponential in the number of dimensions.

John Canny, ”The complexity of robot motion planning”, 1988 [1]
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Multi-robot planning

Goal

Find decompositions of the composite configuration space to make multi-robot planning

more efficient (while keeping completeness/optimality).

9



Multi-robot planning: Taxonomy

• Are your robots identical? (Homogeneous vs Non-Homogeneous)

• If homogeneous, are the goals interchangeable? (Labeled vs Unlabeled)

• Who controls your robots? (Centralized vs Decentralized)

• What kind of cost do you want to minimize?

• Makespan (last arrival time)

• Flowtime (total arrival time)
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Multi-robot planning: Taxonomy

• Homogeneous planning

• Pebbles on a graph

• Conflict-based search

• Non-Homogeneous planning

• Prioritized planning (vertical)

• Decomposed planning (horizontal)

• M*

• dRRT/dRRT*
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Homogeneous Planning



Homogeneous planning
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Homogeneous planning

Also called Multi-agent path finding (MAPF)

• All robots are identical

• All robot state spaces are identical (modulo robot-robot collisions)

Main Idea

Problem can be reduced to pebbles-on-a-graph [2]
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Homogeneous planning: Pebbles on a graph reduction

• Assume we have a homogeneous team of M robots

• Let XC = X × X × · · · × X (M times) be the composite state space
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Homogeneous Planning

Example of pebbles on a graph in 2D
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Homogeneous planning: Pebbles on a graph reduction
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Homogeneous planning: Pebbles on a graph reduction

Pebbles-on-a-graph Problem

Move M pebbles on a graph from a start arrangement to a goal arrangement. Pebbles

are not allowed to collide.

see e.g. Kornhauser, ”Coordinating Pebble Motion on Graphs” (1984) [3]
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Homogeneous Planning

Theory of pebbles on a graph
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Homogeneous planning: Pebbles on a graph reduction

Let XC = X × . . . × X be a homogeneous planning problem for M robots with M

start/goal pairs (x1I , x
1
G ), . . . , (x

M
I , xMG ).

Pebbles-on-a-graph reduction

• Create a single roadmap G on X.

• Add start/goal pair vertices to X and connect to G

• Solve this simultaneously while taking robot-robot collisions into account.
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Homogeneous planning: Pebbles on a graph reduction

Pebbles-on-a-graph

Let G = (V ,E ) be a graph on X . Let us assume that there are M pebbles (or

agents), which start at vertices s1, . . . , sM (start arrangement) and need to go to vertices

g1, . . . , gM (goal arrangement). [3]

Approaches to pebbles-on-a-graph

• Push and Swap [4]

• Integer Linear Programming [5]

• Conflict-based search [6]
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Homogeneous Planning

Conflict-based search
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Homogeneous planning: Solving pebbles on a graph

Conflict-based search I

• Assume each pebble has two moves

• Wait at current vertex

• Move to adjacent vertex

• Goal: Find set of moves to reach goal arrangement.
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Homogeneous planning: Solving pebbles on a graph

Conflict-based search II

• Key idea: Resolve collisions one-by-one

• First, plan for each pebble individually

• Second, resolve collisions

• Assume pebbles A,B collide at time T at vertex V

• Add collision constraints to problem

• Either (1) A should not be V at time T

• Or (2) B should not be V at time T

• This creates a constraint tree

• Pick next entry based on ”Best cost” and ”First collision first” tie-breaker.
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Homogeneous planning: Solving pebbles on a graph

Constraint Tree Example
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Homogeneous planning: Solving pebbles on a graph

Constraint Tree Example

Cost: 6, First conflict: t=3

Cost: 7, First conflict: t=4 Cost: 7, First conflict: t=2

Cost: 8, First conflict: t=4 Cost: 8, No conflict
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Optimality

Theorem

Conflict-based search returns the optimal solution.

Proof

Part 1: Proof that no valid paths are removed by

conflict resolution.

Part 2: Proof that a goal node path has the lowest

cost.
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Optimality

Theorem

Conflict-based search returns the optimal solution.

Proof

Best-first search with open nodes (grey), closed nodes (white), and goal nodes (G).
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Optimality

Theorem

Conflict-based search returns the optimal solution.

Proof I: No valid paths are removed by conflict resolution.

Let N be a node in the constraint tree, and CV (N)

be all valid and consistent paths at N.

(1) If we add a constraint at N, we split into nodes

N1, N2.

(2) A valid path needs to be either in N1 or in N2

or it is invalid.

(3) Therefore, CV (N) is split into CV (N1) and

CV (N2) (a valid path is either in N1 or in N2).
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Optimality

Theorem

Conflict-based search returns the optimal solution.

Proof II: A goal node path has the lowest cost.

(1) Let us assume that we reached a goal node G

with cost c(G ).

(2) Let p be an arbitrary valid path. Then p must

be in an open node N. Then it is lower bounded by

the best cost at N, i.e. c(N(p)) ≤ c(p).

(3) Since we used best-first search, the cost at G is

the lowest of all open nodes. Therefore

c(G ) ≤ c(N(p)) ≤ c(p)
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Homogeneous multi-robot planning

Example of 32 drones on composite state space R192.

Using homogeneous multi-robot planning: Computation time is 50s (roadmap genera-

tion on R6) plus 0.8s (conflict annotation) plus 0.5s (conflict-based search) plus 6.5s

(optimization) [7]
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Homogeneous multi-robot planning
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Non-Homogeneous Multi-robot

Motion Planning



Non-homogeneous planning
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Non-Homogeneous Multi-Robot Planning

• All state spaces differ

• No easy reduction possible

• Can usually not efficiently be solved in composite state space
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Non-Homogeneous Multi-Robot Planning

Main approaches

• Prioritized (also greedy, or ”vertical”)

• Decomposition (also ”horizontal”)
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Prioritized Multi-Robot Motion

Planning



Non-Homogeneous Multi-Robot Planning: Prioritized
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Non-Homogeneous Multi-Robot Planning

• Let X = Y × Z be the composite state space.

• Prioritized planning: Find path on Y , then use this as a constraint on X

• Constraint can be modelled as a path restrictions.
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Non-Homogeneous Multi-Robot Planning

Consider two 1-d robots with state space S1 (the circle).
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Non-Homogeneous Multi-Robot Planning

Consider two 1-d robots with state space S1 (the circle).
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Non-Homogeneous Multi-Robot Planning

Composite state space is the torus T 2.
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Non-Homogeneous Multi-Robot Planning

Prioritized planning can be seen as projection T 2 down to S1.

A path on S1 induces a path restriction on T 2.
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Non-Homogeneous Multi-Robot Planning

Composite State Space

Let X = Y × Z be the (composite) state space.

Projection

A projection π : X → Y is a mapping from X to Y . Example: πT 2 : (θ1, θ2)→ (θ1)

Base space

Given a projection π : X → Y , we call Y the base space.
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Non-Homogeneous Multi-Robot Planning

Restriction

Let X = Y × Z and π : X → Y be a

projection.

Given a subset U of Y , we call

π−1(U) = {x ∈ X | π(x) ∈ U} (1)

a restriction.

Path Restriction

Let p : [0, 1] → Y be a path with image

U = p([0, 1]) ⊂ Y .

Then π−1(U) is called the path restriction.
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Non-Homogeneous Multi-Robot Planning

Restriction sampling

Let πT 2 : (θ1, θ2)→ (θ1) be the projection

π : T 2 → S1, and p be a path on S1.

Restriction sampling:

1. Sample an element y in p([0, 1]).

2. Sample an element of π−1(y)
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Non-Homogeneous Multi-Robot Planning

Guarantees

Probabilistic completeness?

Asymptotic optimality?
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Non-Homogeneous Multi-Robot Planning

Probabilistic completeness and asymptotic

optimality is possible. Requires two

changes.

• Replace path restriction sampling

with graph restriction sampling

• Continue sampling on base space(s).

A Orthey, S Akbar, M Toussaint, ”Multilevel Motion Planning: A Fiber Bundle Formulation”, IJRR,

2023 [8]
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Non-Homogeneous Multi-Robot Planning

GreedyPrioritizedPlanner(xI , XG , X1, . . . ,XK )

1. For k = 1 to K do

2. While not terminated (Xk)

3. Grow(Xk)

4. pk = GetPath(Xk)

5. SetPathRestriction(pk , Xk+1)
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Non-Homogeneous Multi-Robot Planning

PrioritizedPlanner(xI , XG , X1, . . . ,XK )

1. Q ← ∅ (priority queue)

2. For k = 1 to K do

3. Q.push(Xk)

4. While not terminated (Xk)

5. Xselect ← Q.pop()

6. Grow(Xselect)

7. Q.push(Xselect)

A Orthey, M Toussaint, ”Rapidly-Exploring Quotient-Space Trees: Motion Planning using Sequential

Simplifications”, ISRR, 2019 [Orthey2019ISRR]
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Non-Homogeneous Multi-Robot Planning

Advantages of Prioritized Planning

• Paths/graphs on base space as necessary condition on solution (same principle as

admissible heuristics/A*)

• Fast if robots are near-decomposable (robot-robot collisions are rare)

Disadvantages of Prioritized Planning

• Ordering of robots needs to be provided

• Unclear which spaces to grow first
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Decomposed Multi-Robot Motion

Planning



Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed

Intersection of path restrictions

• Let X = Y × Z be the composite state space.

• Decomposed planning: Use projections πY : X → Y and πZ : X → Z .

• Find path p1 on Y , and find path p2 on Z .

• Compute path restrictions R1 = π−1
Y (p1) and R1 = π−1

Z (p2).

• Define motion planning problem in intersection XR = R1 ∩ R2.
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T 2 = S1
1 × S1

2 with π1 : T
2 → S1

1 , and π2 : T
2 → S1

2 .
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T 2 = S1
1 × S1
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2 → S1

2 .
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T 2 = S1
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T 2 = S1
1 × S1
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T 2 = S1
1 × S1

2 with π1 : T
2 → S1

1 , and π2 : T
2 → S1

2 .
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Non-Homogeneous Multi-Robot Planning: Decomposed

Intersection of path restrictions

• Intersection of path restrictions is equivalent to space of path reparameterizations

(s : [0,T ]→ [0, 1]).

• Finding a path over this intersection is called path coordination [9]

Is this optimal?
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Non-Homogeneous Multi-Robot Planning: Decomposed

Adding completeness:

Replace path restriction with graph restric-

tion.

⇒ Graph coordination
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Non-Homogeneous Multi-Robot Planning: Decomposed

Decomposed planning

• Step 1: Compute individual graphs on component state spaces

• Step 2: Consider the (implicit) product of graphs on the composite state space

• Step 3: Expand edges by optimistically follow shortest paths on the component

state spaces

• Step 4: If conflicts arise, backtrack around conflict areas

• M*: Using cost-to-go estimate [10]

• dRRT/dRRT*: Using directional oracle [11]
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M*



Non-Homogeneous Multi-Robot Planning: Decomposed

Conflict-resolution in graph coordination

M* works like A*, using as admissible heuristic the cost-to-go of individual spaces
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed

M*

M* is efficient, because it optimistically exploits implicit graph.

• Individual shortest paths are admissible heuristics from individual robots.

• M* combines those admissible heuristics in an optimal way

Drawback: Inefficient for higher dimensions (number of neighbors grows exponentially)
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Discrete RRT (dRRT)



Non-Homogeneous Multi-Robot Planning: Decomposed

dRRT

Discrete-RRT (dRRT) works like M*, but uses an oracle function to pick best neighbor

• Oracle works for euclidean spaces, i.e. planning in Rn.

• Oracle gives you a faster (approximate) ordering of neighbors
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed

Directional oracle in dRRT

Given vertex v , neighbor edges (v , v ′) ∈ E , and random point u in Rn

O(v , u) = argmin
v ′
{θv (u, v ′) | (v , v ′) ∈ E}
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Summary multi-robot approaches



Multi-Robot Planning: Homogeneous planning

Homogeneous planning: Advantages

• Superior reduction if all robots are equivalent

• Conflict-based search (optimal)

• Scales well with number of robots

Homogeneous planning: Disadvantages

• Cannot be applied to non-homogeneous teams
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Multi-Robot Planning: Prioritized non-homogeneous planning

Prioritized multi-robot planning

• Replaces original problems with a sequence of simpler problems

• Solutions to simpler problems provide admissible heuristics

Prioritized multi-robot planning: Disadvantages

• Requires ordering
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Multi-Robot Planning: Decomposed non-homogeneous planning

Decomposed multi-robot planning

• Planning for each robot individually (could be done in parallel)

• Combine solutions into one tensor graph on composite state space

• If environment is static, graphs could be precomputed

Decomposed multi-robot planning: Disadvantages

• Individual graphs need to be dense to give good solutions
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Planning with Manifold Constraints



Planning with Manifold Constraints

Manifold constraints

Constraints on a state space which remove effective degrees of freedom
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Planning with Manifold Constraints: Contacts
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Planning with Manifold Constraints: Grasping
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Planning with Manifold Constraints: Surface welding
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Zero-measure sets



Planning with Manifold Constraints

Lebesgue-measure

• Measure as generalization of volume

• Lebesgue-measure (or box measure): n-dimensional volume, corresponds to

length (1D), area (2D), volume (3D).
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Planning with Manifold Constraints

76



Planning with Manifold Constraints

76



Planning with Manifold Constraints

76



Planning with Manifold Constraints

77



Planning with Manifold Constraints

77



Planning with Manifold Constraints

78



Planning with Manifold Constraints

78



Planning with Manifold Constraints

Construction Lebesgue-measure for n-dimensional box

• Define an n-dimensional box B =
∏n

i=1[ai , bi ] (this is the Cartesian product of

intervals [ai , bi ], such that ai < bi )

• Define Lebesgue-measure as

µ(B) = vol(B) =
n∏

i=1

(bi − ai ). (2)
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Planning with Manifold Constraints
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Planning with Manifold Constraints
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Planning with Manifold Constraints

Construction Lebesgue-measure

• Let U ⊂ Rn be any set.

• Define Lebesgue-measure as the minimal volume over all sets of boxes which

cover U.

µ(U) = vol(U) = inf
C

{∑
B∈C

vol(B)

}
,

with C being a collection of boxes covering U.
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Planning with Manifold Constraints

Zero-measure sets

• Lebesgue measure µ is defined relative to dimensionality of space.

• Let n be the dimensionality of the state space.

• A set has zero measure if d ≤ n − 1, whereby d is the dimension of the set

(minimal number of parameters to describe it).
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Planning with Manifold Constraints

Zero-measure sets

• Probability of sampling in a zero-measure set is zero.
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Planning with Manifold Constraints

Positive-measure sets

• If U ⊆ X is a set with measure µ(U) > 0, then the probability of sampling U

with uniform sampling of X is one. 84



Planning with Manifold Constraints

References

• LaValle, Planning Algorithms, 2006 (Sec. 5.1.3)

http://lavalle.pl/planning/node190.html

• Measure theory https://en.wikipedia.org/wiki/Measure_(mathematics)
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Planning with zero-measure sets



Planning with Manifold Constraints
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Planning with Manifold Constraints
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Planning with Manifold Constraints

Motion Planning with Manifold Constraints

• Define constraint function F (q) : Q → Rk such that F (q) = 0 when k

constraints are fulfilled.

• This implies that there are m = n − k effective degrees of freedom.

• Constraint function thus defines an m-dimensional constrained configuration

space

X = {q ∈ Q | F (q) = 0}

• State space Q is called the ambient space of X .
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Planning with Manifold Constraints
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Planning with Manifold Constraints

88



Planning with Manifold Constraints

Zero-measure constraints

• Sampling not directly possible (zero chance to hit constraints)

• Interpolation not directly possible (will almost always move into ambient space)

• Planning with Manifold Constraints needs to address those two issues.
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Planning with Manifold Constraints

Constraint planning approaches

• Relaxation-based

• Projection-based

• Continuation-based
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Relaxation-based constraint planning
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Relaxation-based constraint planning

• Given some ϵ > 0, define relaxed configuration space

Xϵ = {q ∈ Q | ∥F (q)∥ ≤ ϵ}

• Rejection sampling: Uniform sampling and reject everything outside Xϵ.
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Relaxation-based constraint planning

• Given some ϵ > 0, define relaxed configuration space

Xϵ = {q ∈ Q | ∥F (q)∥ ≤ ϵ}

• Rejection sampling: Uniform sampling and reject everything outside Xϵ.

Interpolation?
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Relaxation-based constraint planning

• Given some ϵ > 0, define relaxed configuration space

Xϵ = {q ∈ Q | ∥F (q)∥ ≤ ϵ}

• Rejection sampling: Uniform sampling and reject everything outside Xϵ.

Probabilistic Completeness?
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Projection-based constraint planning
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Projection-based constraint planning
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Projection-based constraint planning

• Given constraint configuration space X and ambient space Q, define projection

π : Q → X .

• Projection sampling: Uniform sampling and projecting onto X

Interpolation?

Probabilistic Completeness? [berenson2009manipulation]
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Continuation-based constraint planning
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Continuation-based constraint planning
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Continuation-based constraint planning

• Compute piecewise-linear approximations (a chart) to compute a cover (an atlas)

on the constraint configuration space Q

• Atlas sampling

Interpolation?

Probabilistic Completeness? [jaillet2012path]
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Continuation-based constraint planning
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BSc/MSc Theses Opportunities

If you found this course interesting, we invite you to write a thesis with us.
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BSc/MSc Theses Opportunities

BSc/MSc Theses Opportunities

• Most important requirements: C++ or Python / Linear Algebra

• Wide variety of Topics on Robotics/Motion Planning/Machine Learning

• Construction Assembly

• Quadrocopter Flight and Transport

• Solving Physical Puzzles with Robots

• Theory of Motion Planning

• Weekly supervision

• Involved in cutting edge research

• Possibility of writing a paper
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BSc/MSc Theses Opportunities (Examples papers)

• Janis Eric Freund, et al., Asymptotically Optimal Belief Space Planning in Discrete

Partially-Observable Domains, IROS, 2024

• Bora Bayraktar, et al., Solving Rearrangement Puzzles using Path Defragmentation in Factored

State Spaces, RAL, 2023

• Francesco Grothe, et al., ST-RRT*: Asymptotically-Optimal Bidirectional Motion Planning

through Space-Time, ICRA, 2022

• Marie-Therese Khoury, et al., Efficient Sampling of Transition Constraints for Motion Planning

under Sliding Contacts, CASE, 2021
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Conclusion

Today

• Multi-robot planning in composite state space

• Projections as requirement for efficient planning

• Homogeneous planning: Pebbles on a graph and conflict-based search

• Non-homogeneous planning: Prioritized vs. Decomposed

• Manifold constraints and zero-measure sets

Exam next week

• Please post questions on the ISIS forum
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