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Recap Last Week

e Optimization-based planning (KOMO)
e Comparison of Search, Optimization, and Sampling

e Hybrid approaches

e Multi-robot motion planning

e Planning with manifold constraints




Multi-robot navigation




Multi-robot welding




Multi-robot assembly




Coordination of drones




Multi-robot planning

Multi-robot planning: Coordinate motion of multiple robots acting in the same

environment.



Multi-robot planning

Central idea: Multi-robot planning is just planning in the composite configuration space.
Robot state spaces X1, X, X3, Composite space X = X1 x X5 x Xj.

\. J

How to adjust primitive methods?

e Sampling

Interpolation

Propagation /Steering

Collision-Checking




Multi-robot planning

[Computational complexity is exponential in the number of dimensions. ]

John Canny, " The complexity of robot motion planning”, 1988 [1]



Multi-robot planning

Find decompositions of the composite configuration space to make multi-robot planning

more efficient (while keeping completeness/optimality).




Multi-robot planning: Taxonomy

Are your robots identical? (Homogeneous vs Non-Homogeneous)

If homogeneous, are the goals interchangeable? (Labeled vs Unlabeled)

Who controls your robots? (Centralized vs Decentralized)
e What kind of cost do you want to minimize?

e Makespan (last arrival time)
e Flowtime (total arrival time)

10



Multi-robot planning: Taxonomy

e Homogeneous planning
e Pebbles on a graph
e Conflict-based search
e Non-Homogeneous planning
e Prioritized planning (vertical)
e Decomposed planning (horizontal)
o M*
e dRRT/dRRT*
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Homogeneous Planning



Homogeneous planning
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Homogeneous planning

Also called Multi-agent path finding (MAPF)
e All robots are identical

e All robot state spaces are identical (modulo robot-robot collisions)

Main Idea
Problem can be reduced to pebbles-on-a-graph [2]
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Homogeneous planning: Pebbles on a graph reduction

e Assume we have a homogeneous team of M robots

o Let Xe = X x X x--- x X (M times) be the composite state space
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Homogeneous Planning

Example of pebbles on a graph in 2D
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Homogeneous planning: Pebbles on a graph reduction

X X

IR
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Homogeneous planning: Pebbles on a graph reduction
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Homogeneous planning: Pebbles on a graph reduction

X X
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Homogeneous planning: Pebbles on a graph reduction
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Homogeneous planning: Pebbles on a graph reduction
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Homogeneous planning: Pebbles on a graph reduction
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Homogeneous planning: Pebbles on a graph reduction
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Homogeneous planning: Pebbles on a graph reduction

=
Pebbles-on-a-graph Problem

Move M pebbles on a graph from a start arrangement to a goal arrangement. Pebbles

are not allowed to collide.

see e.g. Kornhauser, " Coordinating Pebble Motion on Graphs” (1984) [3]
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Homogeneous Planning

Theory of pebbles on a graph
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Homogeneous planning: Pebbles on a graph reduction

start/goal pairs (x}, x%),...,(xM,x¥).

Let Xc = X x ... x X be a homogeneous planning problem for M robots with M

J

e Create a single roadmap G on X.
e Add start/goal pair vertices to X and connect to G

e Solve this simultaneously while taking robot-robot collisions into account.

Pebbles-on-a-graph reduction
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Homogeneous planning: Pebbles on a graph reduction

Pebbles-on-a-graph

Let G = (V,E) be a graph on X. Let us assume that there are M pebbles (or
agents), which start at vertices sy, . . ., sy (start arrangement) and need to go to vertices

g1, ---,8Mm (goal arrangement). [3]

Approaches to pebbles-on-a-graph

e Push and Swap [4]

e Integer Linear Programming [5]

e Conflict-based search [6]
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Homogeneous planning: Pebbles on a graph reduction

Pebbles-on-a-graph

Let G = (V,E) be a graph on X. Let us assume that there are M pebbles (or
agents), which start at vertices sy, . . ., sy (start arrangement) and need to go to vertices

g1, ---,8Mm (goal arrangement). [3]

Approaches to pebbles-on-a-graph

e Push and Swap [4]

e Integer Linear Programming [5]

Conflict-based search |

o
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Homogeneous Planning

Conflict-based search
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Homogeneous planning: Solving pebbles on a graph

Conflict-based search |

e Assume each pebble has two moves
e Wait at current vertex
e Move to adjacent vertex

e Goal: Find set of moves to reach goal arrangement.
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Homogeneous planning: Solving pebbles on a graph

Conflict-based search ||

e Key idea: Resolve collisions one-by-one

e First, plan for each pebble individually
e Second, resolve collisions

e Assume pebbles A,B collide at time T at vertex V
e Add collision constraints to problem

Either (1) A should not be V at time T

Or (2) B should not be V at time T

e This creates a constraint tree

Pick next entry based on "Best cost” and " First collision first” tie-breaker.
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Homogeneous planning: Solving pebbles on a graph

Constraint Tree Example
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Homogeneous planning: Solving pebbles on a graph

Constraint Tree Example

(e =5 e-m

‘ Cost: 6, First conflict: t=3 ‘
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Homogeneous planning: Solving pebbles on a graph

Constraint Tree Example

‘ e = e~ u

‘ Cost: 6, First conflict: t=3 ]
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‘ Cost: 7, First conflict: t=4 ]
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Homogeneous planning: Solving pebbles on a graph

Constraint Tree Example
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Homogeneous planning: Solving pebbles on a graph

Constraint Tree Example
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Homogeneous planning: Solving pebbles on a graph

Constraint Tree Example

&8 o—a

Cost: 6, First conflict: t=3 ‘
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‘ Cost: 7, First conflict: t=4 ‘ ‘ Cost: 7, First conflict: t=2 ‘
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‘ Cost: 8, First conflict: t=4 ‘ ‘ Cost: 8, No conflict ‘
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Optimality

Conflict-based search returns the optimal solution.

\.

Part 1: Proof that no valid paths are removed by

J

conflict resolution.
Part 2: Proof that a goal node path has the lowest

cost.

L

23



Optimality

Theorem

Conflict-based search returns the optimal solution.

Proof

Best-first search with open nodes (grey), closed nodes (white), and goal nodes (G).
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Optimality

Theorem
Conflict-based search returns the optimal solution.

Let N be a node in the constraint tree, and CV/(N)
be all valid and consistent paths at .

(1) If we add a constraint at N, we split into nodes
Ny, No.

(2) A valid path needs to be either in Ny or in N>
or it is invalid.

(3) Therefore, CV(N) is split into CV/(N;) and
CV(N-) (a valid path is either in Ny or in Ny).

Proof I: No valid paths are removed by conflict resolution.

5%
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Optimality

Theorem
Conflict-based search returns the optimal solution.

Proof I: No valid paths are removed by conflict resolution.

Let N be a node in the constraint tree, and CV/(N)
be all valid and consistent paths at .

(1) If we add a constraint at N, we split into nodes
Ny, No.

(2) A valid path needs to be either in Ny or in N>
or it is invalid.

(3) Therefore, CV(N) is split into CV/(N;) and
CV(N-) (a valid path is either in Ny or in Ny).
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Optimality

Theorem
Conflict-based search returns the optimal solution.

Proof Il: A goal node path has the lowest cost.

(1) Let us assume that we reached a goal node G
with cost ¢(G).

(2) Let p be an arbitrary valid path. Then p must
be in an open node N. Then it is lower bounded by
the best cost at N, i.e. ¢(N(p)) < c(p).

(3) Since we used best-first search, the cost at G is
the lowest of all open nodes. Therefore

c(G) < c(N(p)) < c(p)
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Homogeneous multi-robot planning

Example of 32 drones on composite state space R12.

Using homogeneous multi-robot planning: Computation time is 50s (roadmap genera-
tion on R®) plus 0.8s (conflict annotation) plus 0.5s (conflict-based search) plus 6.5s
(optimization) [7]
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Non-Homogeneous Multi-robot
Motion Planning



Non-homogeneous planning
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Non-Homogeneous Multi-Robot Planning

e All state spaces differ
e No easy reduction possible

e Can usually not efficiently be solved in composite state space

32



Non-Homogeneous Multi-Robot Planning

State space robot, [1..M]

o [ )
State space robot [1..M]

State space robot [1..M-1] - J
—
H ( Y e N
| State space robot [1] oo State space robot [M]
( \ J \ J
State space robot [1]

S

Main approaches

e Prioritized (also greedy, or "vertical”)

e Decomposition (also "horizontal”)
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Prioritized Multi-Robot Motion
Planning




Non-Homogeneous Multi-Robot Planning: Prioritized
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Non-Homogeneous Multi-Robot Planning: Prioritized
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Non-Homogeneous Multi-Robot Planning: Prioritized
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Non-Homogeneous Multi-Robot Planning: Prioritized
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Non-Homogeneous Multi-Robot Planning: Prioritized
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Non-Homogeneous Multi-Robot Planning: Prioritized

34



Non-Homogeneous Multi-Robot Planning

e Let X = Y x Z be the composite state space.
e Prioritized planning: Find path on Y/, then use this as a constraint on X

e Constraint can be modelled as a path restrictions.
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Non-Homogeneous Multi-Robot Planning

[Consider two 1-d robots with state space S! (the circle). ]
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Non-Homogeneous Multi-Robot Planning

[Con5|der two 1-d robots with state space S! (the circle). ]

o
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Non-Homogeneous Multi-Robot Planning

[Composite state space is the torus T2. ]
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Non-Homogeneous Multi-Robot Planning

Prioritized planning can be seen as projection T2 down to S*.
A path on S induces a path restriction on T2.
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Non-Homogeneous Multi-Robot Planning

Composite State Space

Let X = Y X Z be the (composite) state space.

A projection 7 : X — Y is a mapping from X to Y. Example: 72 : (01,602) — (61)

J

Base space

Given a projection w: X — Y, we call Y the base space.
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Non-Homogeneous Multi-Robot Planning

Let X = YxZand 7®: X — Y be a
projection.

Given a subset U of Y, we call
aHU)={xeX|n(x)e U} (1)
a restriction.

Let p : [0,1] — Y be a path with image
U=p(0,1]) C Y.
Then 7=1(U) is called the path restriction.
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Non-Homogeneous Multi-Robot Planning

Restriction sampling

Let w2 : (01,62) — (61) be the projection
7w : T? — S' and p be a path on S'.
Restriction sampling:

1. Sample an element y in p([0,1]).

2. Sample an element of 7—1(y)

41



Non-Homogeneous Multi-Robot Planning

Guarantees

Probabilistic completeness?
Asymptotic optimality?
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Non-Homogeneous Multi-Robot Planning

N

Probabilistic completeness and asymptotic
optimality is possible. Requires two
changes.
e Replace path restriction sampling
with graph restriction sampling

e Continue sampling on base space(s).

A Orthey, S Akbar, M Toussaint, " Multilevel Motion Planning: A Fiber Bundle Formulation”, IJRR,
2023 [8]
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Non-Homogeneous Multi-Robot Planning

GreedyPrioritizedPlanner(x;, Xg, X1, ...

1. For k=1to K do

2. While not terminated (Xk)

3 Grow(Xx)

4. pk = GetPath(Xj)

5 SetPathRestriction(pk, Xk+1)
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Non-Homogeneous Multi-Robot Planning

PrioritizedPlanner(x;, Xg, Xi,...,Xk)

1. Q + 0 (priority queue)
2. For k=1 to K do

3. Q.push(Xk)

4 While not terminated (X)
5 Xselect < Q.pop()
6. Grow(Xsefect )

7 Q.push(Xse/ect)

. J

A Orthey, M Toussaint, " Rapidly-Exploring Quotient-Space Trees: Motion Planning using Sequential
Simplifications”, ISRR, 2019 [Orthey2019ISRR]
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Non-Homogeneous Multi-Robot Planning

Advantages of Prioritized Planning

e Paths/graphs on base space as necessary condition on solution (same principle as
admissible heuristics/A*)

e Fast if robots are near-decomposable (robot-robot collisions are rare)

. J

Disadvantages of Prioritized Planning

e Ordering of robots needs to be provided

e Unclear which spaces to grow first
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Decomposed Multi-Robot Motion
Planning




Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed

Intersection of path restrictions

e Let X = Y x Z be the composite state space.

e Decomposed planning: Use projections 7y : X — Y and 7z : X — Z.

Find path p; on Y, and find path p, on Z.
Compute path restrictions Ry = my'(p1) and Ry = 7, (p2).

e Define motion planning problem in intersection Xg = Ry N Rs.
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 511 X 521 with 771 : T2 — 511, and mp: T2 — 521.
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 511 X 521 with 771 : T2 — 511, and mp: T2 — 521.
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 5% X 521 with m : T2 — 511, and mp : T2 — 521.
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 511 X 521 with m : T2 — 511, and mp : T2 — 521.
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 511 X 5% with m : T2 — 511, and mp : T2 — 521.

Yl
> >
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 511 X 5% with m : T2 — 511, and mp : T2 — 521.

Vol
> >
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 511 X 5% with m : T2 — 511, and mp : T2 — 521.
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 511 X 5% with m : T2 — 511, and mp : T2 — 521.

Il
> >
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Non-Homogeneous Multi-Robot Planning: Decomposed

Example: Path restrictions on T2 = 511 X 5% with m : T2 — 511, and mp : T2 — 521.

Il
> >

58



Non-Homogeneous Multi-Robot Planning: Decomposed

Intersection of path restrictions

e Intersection of path restrictions is equivalent to space of path reparameterizations|
(s: [0, T] — [0,1]).

e Finding a path over this intersection is called path coordination [9]

Is this optimal?
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Non-Homogeneous Multi-Robot Planning: Decomposed

Adding completeness:

Replace path restriction with graph restric-
tion.

= Graph coordination
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Non-Homogeneous Multi-Robot Planning: Decomposed

Decomposed planning

e Step 1: Compute individual graphs on component state spaces

e Step 2: Consider the (implicit) product of graphs on the composite state space

e Step 3: Expand edges by optimistically follow shortest paths on the component
state spaces

e Step 4: If conflicts arise, backtrack around conflict areas

e M*: Using cost-to-go estimate [10]
e dRRT/dRRT*: Using directional oracle [11]
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M*




Non-Homogeneous Multi-Robot Planning: Decomposed

Conflict-resolution in graph coordination

M* works like A*, using as admissible heuristic the cost-to-go of individual spaces
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Non-Homogeneous Multi-Robot Planning: Decomposed

G. Wagner, H. Choset / Artificial Intelligence 219 (2015) 1-24

>
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Non-Homogeneous Multi-Robot Planning: Decomposed

G. Wagner, H. Choset / Artificial Intelligence 219 (2015) 1-24

.
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Non-Homogeneous Multi-Robot Planning: Decomposed

M* is efficient, because it optimistically exploits implicit graph.

e Individual shortest paths are admissible heuristics from individual robots.

e M* combines those admissible heuristics in an optimal way

. J

Drawback: Inefficient for higher dimensions (number of neighbors grows exponentially)

\. J

64



Discrete RRT (dRRT)




Non-Homogeneous Multi-Robot Planning: Decomposed

dRRT

Discrete-RRT (dRRT) works like M*, but uses an oracle function to pick best neighbor

e Oracle works for euclidean spaces, i.e. planning in R".

e Oracle gives you a faster (approximate) ordering of neighbors

. J
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed

66



Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed
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Non-Homogeneous Multi-Robot Planning: Decomposed

Directional oracle in dRRT

Given vertex v, neighbor edges (v,v’) € E, and random point v in R”

O(v,u) = argvr;nin{HV(u, V) | (v, V') € E}
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Summary multi-robot approaches




Multi-Robot Planning: Homogeneous planning

Homogeneous planning: Advantages

e Superior reduction if all robots are equivalent

e Conflict-based search (optimal)

e Scales well with number of robots

\. J

Homogeneous planning: Disadvantages

e Cannot be applied to non-homogeneous teams
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Multi-Robot Planning: Prioritized non-homogeneous planning

Prioritized multi-robot planning

e Replaces original problems with a sequence of simpler problems

e Solutions to simpler problems provide admissible heuristics

Prioritized multi-robot planning: Disadvantages

e Requires ordering
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Multi-Robot Planning: Decomposed non-homogeneous planning

Decomposed multi-robot planning

e Planning for each robot individually (could be done in parallel)
e Combine solutions into one tensor graph on composite state space

e If environment is static, graphs could be precomputed

Decomposed multi-robot planning: Disadvantages

e Individual graphs need to be dense to give good solutions
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Planning with Manifold Constraints




Planning with Manifold Constraints

Manifold constraints

Constraints on a state space which remove effective degrees of freedom
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Planning with Manifold Constraints: Contacts
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Planning with Manifold Constraints: Grasping




Planning with Manifold Constraints: Surface welding
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Zero-measure sets




Planning with Manifold Constraints

Lebesgue-measure

e Measure as generalization of volume

e Lebesgue-measure (or box measure): n-dimensional volume, corresponds to
length (1D), area (2D), volume (3D).
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Planning with Manifold Constraints

\
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Planning with Manifold Constraints
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Planning with Manifold Constraints

line measure 1  point measure 0

' —o——>
0 1 2 X
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Planning with Manifold Constraints
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Planning with Manifold Constraints

Y A
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square measure 1

line measure 0

@ point measure 0
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Planning with Manifold Constraints

2
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cube measure 1
line measure 0

square measure 0
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Planning with Manifold Constraints

Construction Lebesgue-measure for n-dimensional box

e Define an n-dimensional box B = []!_;[a;, b;] (this is the Cartesian product of
intervals [a;, bj], such that a; < b;)

e Define Lebesgue-measure as
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Planning with Manifold Constraints
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Planning with Manifold Constraints
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Planning with Manifold Constraints

Construction Lebesgue-measure

o Let U C R" be any set.

e Define Lebesgue-measure as the minimal volume over all sets of boxes which
cover U.

u(U) = vol(U) = inf {Z vol(B)} ,

BeC

with C being a collection of boxes covering U.
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Planning with Manifold Constraints

Zero-measure sets

e Lebesgue measure p is defined relative to dimensionality of space.
e Let n be the dimensionality of the state space.

e A set has zero measure if d < n— 1, whereby d is the dimension of the set
(minimal number of parameters to describe it).
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cube measure 1
line measure 0

square measure 0

Zero-measure sets

e Probability of sampling in a zero-measure set is zero.
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Planning with Manifold Constraints

YA

cube measure 1
line measure 0

square measure 0

Positive-measure sets

o If UC X is a set with measure p(U) > 0, then the probability of sampling U

with uniform sampling of X is one. o




Planning with Manifold Constraints

References
e LaValle, Planning Algorithms, 2006 (Sec. 5.1.3)

http://lavalle.pl/planning/node190.html

e Measure theory https://en.wikipedia.org/wiki/Measure_(mathematics)
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Planning with zero-measure sets
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Planning with Manifold Constraints
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Planning with Manifold Constraints
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Planning with Manifold Constraints




Planning with Manifold Constraints
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Planning with Manifold Constraints

Motion Planning with Manifold Constraints

e Define constraint function F(q) : @ — R¥ such that F(q) = 0 when k
constraints are fulfilled.
e This implies that there are m = n — k effective degrees of freedom.
e Constraint function thus defines an m-dimensional constrained configuration
space
X={q€Q|F(q) =0}

e State space Q is called the ambient space of X.
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Planning with Manifold Constraints
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Planning with Manifold Constraints
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Planning with Manifold Constraints

Zero-measure constraints

e Sampling not directly possible (zero chance to hit constraints)

e Interpolation not directly possible (will almost always move into ambient space)

e Planning with Manifold Constraints needs to address those two issues.
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Planning with Manifold Constraints

Constraint planning approaches

e Relaxation-based
e Projection-based

e Continuation-based
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Relaxation-based constraint planning
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Relaxation-based constraint planning

e Given some € > 0, define relaxed configuration space

Xe={aeQllF(al <}

e Rejection sampling: Uniform sampling and reject everything outside X..
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Relaxation-based constraint planning

e Given some € > 0, define relaxed configuration space

Xe={aeQl|F(al <}

e Rejection sampling: Uniform sampling and reject everything outside X..

Interpolation?
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Relaxation-based constraint planning

e Given some € > 0, define relaxed configuration space

Xe={aeQl|F(al <}

e Rejection sampling: Uniform sampling and reject everything outside X..

Probabilistic Completeness?
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Projection-based constraint planning




Projection-based constraint planning
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Projection-based constraint planning

e Given constraint configuration space X and ambient space Q, define projection
T Q — X.

e Projection sampling: Uniform sampling and projecting onto X

Interpolation?
Probabilistic Completeness? [berenson2009manipulation]

96



Continuation-based constraint planning

\
J

/|

Z 7

// / S

7 7
o5
%054

97




Continuation-based constraint planning
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Continuation-based constraint planning
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Continuation-based constraint planning




Continuation-based constraint planning
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Continuation-based constraint planning
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Continuation-based constraint planning
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Continuation-based constraint planning
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Continuation-based constraint planning

e Compute piecewise-linear approximations (a chart) to compute a cover (an at/as)
on the constraint configuration space @

e Atlas sampling

s A

Interpolation?
Probabilistic Completeness? [jaillet2012path]

\. J
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Continuation-based constraint planning
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BSc/MSc Theses Opportunities




BSc/MSc Theses Opportunities

If you found this course interesting, we invite you to write a thesis with us.
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BSc/MSc Theses Opportunities

BSc/MSc Theses Opportunities

Most important requirements: C4++ or Python / Linear Algebra

Wide variety of Topics on Robotics/Motion Planning/Machine Learning
e Construction Assembly
e Quadrocopter Flight and Transport
e Solving Physical Puzzles with Robots
e Theory of Motion Planning

Weekly supervision

Involved in cutting edge research

Possibility of writing a paper
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BSc/MSc Theses Opportunities (Examples papers)

Asymptotically Optimal Belief Space Planning in Solving Rearrangement Puzzles
Discrete Partially-Observable Domains using Path Defragmentation in Factored State Spaces
ST-RRT*: Asymptotically-Optimal Bidirectional

Janis Esic Freun’, Canile Phiquepal’, Andreas Orthey', Mare Toussand Servet B, Bayeaktar', Andreas Orthey*, Zachary Kingston?, Mare Toussainc, Lydia E. Kavraki® Motion Planning through Space-Time

2 A Oty Mar Tossin’
WD wld

e Janis Eric Freund, et al., Asymptotically Optimal Belief Space Planning in Discrete
Partially-Observable Domains, IROS, 2024

e Bora Bayraktar, et al., Solving Rearrangement Puzzles using Path Defragmentation in Factored
State Spaces, RAL, 2023

e Francesco Grothe, et al., ST-RRT*: Asymptotically-Optimal Bidirectional Motion Planning
through Space-Time, ICRA, 2022

e Marie-Therese Khoury, et al., Efficient Sampling of Transition Constraints for Motion Planning
under Sliding Contacts, CASE, 2021
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Conclusion

e Multi-robot planning in composite state space
e Projections as requirement for efficient planning
e Homogeneous planning: Pebbles on a graph and conflict-based search

e Non-homogeneous planning: Prioritized vs. Decomposed

Manifold constraints and zero-measure sets

Exam next week

e Please post questions on the ISIS forum
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