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Asymptotically optimal x (AO-x) [1] is a meta kinodynamic motion plan-
ner [4], which can take as input any feasible kinodynamic motion planner, and
convert it into an asymptotically optimal planner. Common choices for x are the
rapidly-exploring random tree (RRT) [3] planner or the expansive space-trees
(EST) [2] planner. In this document, I will summarize the proof of asymptotic
optimality for AO-x, which is fully detailed in [1].

Let us first declare some variables. Let X be a feasible kinodynamic mo-
tion planning algorithm. Note that X needs to be a probabilistically complete
kinodynamic planner (but not necessarily asymptotically optimal).

To prove that AO-x with algorithm X is asymptotically optimal, let us first
write down two assumptions:

Assumption 1. Algorithm X will terminate in finite time.

Assumption 2. Algorithm X reduces cost by a non-negligible amount. This
means: Let C̄ be the cost limit, and C⋆ the optimal cost. Then the expected
suboptimality is shrunk toward C⋆ by a non-negligible amount each iteration. If
C(π) is the current path cost, then

E[C(π) | C̄ − C⋆] ≤ (1− w)(C̄ − C⋆), (1)

whereby w > 0 is a constant positive value.

By assuming Assumption 1 and 2, we can state and prove the following
theorem.

Theorem 1. AO-x is asymptotically optimal.

Proof. Let S0, . . . , Sn be non-negative random variables denoting C(πi) − C⋆,
i.e. the cost difference between the cost of the returned path in iteration i and
the optimal path cost C⋆.

Our goal is to prove that the sequence converges almost surely, i.e.

P ( lim
n→∞

Sn = 0) = 1. (2)

This means, that the sequence S0, . . . , Sn will converge to 0 when n goes to
infinity with probability 1. The proof itself consists of 4 steps.
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Step 1: Transformation to convergence in probability
Let us first make a transformation of Eq. (2). Since Sn is always non-

negative, it is sufficient to show that Sn converges in probability (see info box
below) as Sn → 0, to prove the original result which results in

lim
n→∞

P (Sn > ϵ) = 0. (3)

While this is a weaker statement (in probability) compared to Eq. (2) (almost
surely), we can, however, rely on the fact that if a nonnegative sequence (like
Sn) converges to 0 in probability, then there exists a subsequence that actually
converges to 0 with probability 1 [5]. From here, we are left to prove that the
sequence converges in probability.

Convergence in Probability. Let X1, X2, . . . be a sequence of ran-
dom variables. We say this sequence converges in probability to a random

variable X, written as Xn
p→ X, if, for all ϵ > 0

lim
n→∞

P (|Xn −X| > ϵ) = 0.

Step 2: Applying Markov inequality

The Markov inequality states that P (Sn ≥ ϵ) ≤ E[Sn]
ϵ . If we could prove

that

lim
n→∞

E[Sn]

ϵ
= 0, (4)

then this would imply Eq. 3. This is a valuable step, since our assumptions
already provide an upper bound for the expected value.
Step 3: Find upper bound to conditional expectancy

By using Assumption (2), we can find an upper bound to the expected value
of Sn as

E[Sn] =

∫
E[Sn | Sn−1]P (Sn−1)dSn−1 (5)

≤ (1− w)

∫
Sn−1P (Sn−1)dSn−1 (6)

= (1− w)E[Sn−1] = (1− w)n E[S0] (7)

Step 4: Evaluate the expectancy
Using the upper bound for the expectancy we can now evaluate

lim
n→∞

P (Sn > ϵ) ≤ lim
n→∞

E[Sn]

ϵ
(8)

≤ lim
n→∞

E[S0](1− w)n

ϵ
(9)

≤ E[S0]

ϵ
lim
n→∞

(1− w)n = 0. (10)
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This in turn verifies Eq. 2 through Eq. 3 as desired.
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