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Let τ̄ ∈ F = C([0, 1], X) with F being an infinite dimensional functional
space containing all continuous functions from [0, 1] to a space X [Kreyszig,
1991]. We can represent F by an orthonormal basis of an infinite number of
basis functions {f1, f2, · · · }. Any function τ̄ in F can then be written as a linear
combination of basis functions as [Boyd and Vandenberghe, 2004]

τ̄(t) =

∞∑
k=0

wkfk(t) (1)

whereby wk are called the coefficients of the basis functions. Optimization
over F can now be done by optimizing over the linear coefficients wk, corre-
sponding to a linear program.

optimize
{w1,w2,··· }

τ̄ =

∞∑
k=0

wkfk(t) (2)

Let us approximate this linear program by using only a finite number of
basis function, corresponding to a subspace of F . This corresponds to a loss of
completeness. However, for applications where for example high frequency func-
tions are undesirable, this approximation will actually be almost not noticeable.
Let us choose a K ≫ 0 such that

optimize
{w1,··· ,wK}

τ =

K∑
k=0

wkfk(t) (3)

This convex (linear) program will be our (approximate) representation of
the functional space F .
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1 Classical Convex Constraints

We can now apply any convex constraints on the functional space, so that we
preserve convexity of our optimization procedure. A good overview is given
by Boyd and Vandenberghe [2004]. We will try to list here all known convex
constraints, whereby

• LEC = Linear Equality Constraint

• LIC = Linear Inequality Constraint

• QEC = Quadratic Equality Constraint

• QIC = Quadratic Inequality Constraint

• CEC = Convex Equality Constraint

• CIC = Convex Inequality Constraint

1.1 Interpolation Condition (LEC)

At point ti, we like the function τ to have the value zi, corresponding for example
to a waypoint at zi.

τ(ti) = zi, i = 1, · · · ,m (4)

this is an LEC on the functional space.

1.2 Neighborhood Constraint (LIC)

We can also require the function to be in an ϵ-neighborhood of the waypoint at
point ti as:

∥τ(ti)− zi∥2 ≤ ϵ i = 1, · · · ,m (5)

1.3 Polytope Constraint (LIC)

Going even further, we can restrict the position of τ at point ti to any convex
polytope P = {x|Ax ≤ b} as

Aτ(ti) ≤ b i = 1, · · · ,m (6)

1.4 Lipschitz Constraint (LIC)

∥τ(tj)− τ(tk)∥ ≤ L∥tj − tk∥ i = 1, · · · ,m (7)
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2 Convex Derivative Constraints

Let us assume that F is actually C1, contains only functions which are differen-
tiable. Given a point ti, the derivative of τ is given by

d

dt
τ(t) =

K∑
k=0

wk
d

dt
fk(t) (8)

which is again a linear function of x. We can therefore apply any constraints

which we applied to τ also to its derivative
d

dt
τ .

2.1 Maximum Gradient Norm (QIC)

If we like to constraint the maximum gradient of τ (corresponding to a maximum
speed), we can do this via a QIC

∥ d

dt
τ(ti)∥ ≤ M (9)

2.2 Monotonity (LIC)

If we like our function to be increasing we can restrict the derivative to the
positive halfspace

τ(ti) ≥ 0 i = 1, · · · ,m (10)

3 Combination Constraints

3.1 Circle on Polygonal Surface Constraint

Rx

Let a polytope be given by P = {x ∈ Rn|akx ≤ bk, k = 1, · · · , D}, non-
empty, bounded. Given a surface p of this polytope, we can construct a convex
equation to determine if a point on the surface p has a circle of radius R, which
is fully contained in the surface element p.

aTk x+RaTk a
′
k ≤ bk, i = {1, · · · , p− 1, p+ 1, · · · , T}

aTp x = bp
(11)
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whereby R is the radius of the circle, x the center, ap is the surface normal of
the element p, and a′k is the orthogonal projection onto the hyperplane of ap, i.e.
a′k = ak − (aTk ap)ap. This could correspond to the (circular) foot of a humanoid
robot stepping on a box or another surface element. If our trajectory is actually
a trajectory for a foot, we might want to restrict the whole foot to this surface
element. The corresponding constraint on our trajectory would be

Aτ(ti) ≤ b− ϵdiag(ATA′) (12)

whereby we have A = {a1, · · · , aD} and A′ = {a′1, · · · , a′D} with a′k = ak −
(aTk ap)ap
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