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Let 7 € F = C([0,1], X) with F being an infinite dimensional functional
space containing all continuous functions from [0,1] to a space X [Kreyszig,
1991]. We can represent F by an orthonormal basis of an infinite number of
basis functions {f, f2,--- }. Any function 7 in F can then be written as a linear
combination of basis functions as [Boyd and Vandenberghel [2004]

o0
T(t) =Y wfi(t) (1)
k=0
whereby wy, are called the coefficients of the basis functions. Optimization
over F can now be done by optimizing over the linear coefficients wy, corre-
sponding to a linear program.

o0
optimize 7T = Z wi, fr (1) (2)
{wi, w2, } k=0

Let us approximate this linear program by using only a finite number of
basis function, corresponding to a subspace of F. This corresponds to a loss of
completeness. However, for applications where for example high frequency func-
tions are undesirable, this approximation will actually be almost not noticeable.
Let us choose a K > 0 such that

K
optimize T = Z wi [ (t) (3)
¥ k=0

{wr,wk

This convex (linear) program will be our (approximate) representation of
the functional space F.



1 Classical Convex Constraints

We can now apply any convex constraints on the functional space, so that we
preserve convexity of our optimization procedure. A good overview is given
by Boyd and Vandenberghe| [2004]. We will try to list here all known convex
constraints, whereby

e LEC = Linear Equality Constraint

e LIC = Linear Inequality Constraint

o QEC = Quadratic Equality Constraint
o QIC = Quadratic Inequality Constraint
e CEC = Convex Equality Constraint

e CIC = Convex Inequality Constraint

1.1 Interpolation Condition (LEC)

At point ¢;, we like the function 7 to have the value z;, corresponding for example
to a waypoint at z;.

‘T(ti)zzi, i=1,-~-,m‘ (4)

this is an LEC on the functional space.

1.2 Neighborhood Constraint (LIC)

We can also require the function to be in an e-neighborhood of the waypoint at
point ¢; as:

‘HT(ti)—ziHQSe i:17~-~,m‘ (5)

1.3 Polytope Constraint (LIC)

Going even further, we can restrict the position of 7 at point ¢; to any convex
polytope P = {z|Azx < b} as

(Ar(t) <b i=1,---,m] (6)

1.4 Lipschitz Constraint (LIC)

It = 7@l < Lllty —tull i=1,---m] (7)




2 Convex Derivative Constraints

Let us assume that F is actually C!, contains only functions which are differen-
tiable. Given a point ¢;, the derivative of 7 is given by

d Xod

2T = > wre— fi(t) (8)
k=0

which is again a linear function of x. We can therefore apply any constraints

which we applied to 7 also to its derivative %7’.

2.1 Maximum Gradient Norm (QIC)

If we like to constraint the maximum gradient of 7 (corresponding to a maximum
speed), we can do this via a QIC

=)l < M (9)

2.2 Monotonity (LIC)

If we like our function to be increasing we can restrict the derivative to the
positive halfspace

Tt)>0 i=1,--.,m (10)
| |

3 Combination Constraints

3.1 Circle on Polygonal Surface Constraint

Let a polytope be given by P = {z € R"|ayz < by, k = 1,---, D}, non-
empty, bounded. Given a surface p of this polytope, we can construct a convex
equation to determine if a point on the surface p has a circle of radius R, which
is fully contained in the surface element p.

agx‘i’Raz;a%Sbkv Z:{173p717p+175T} (11)

T,
a,x = by



whereby R is the radius of the circle, x the center, a, is the surface normal of
the element p, and aj, is the orthogonal projection onto the hyperplane of a,, i.e.
aj, = ay — (aFa,)a,. This could correspond to the (circular) foot of a humanoid
robot stepping on a box or another surface element. If our trajectory is actually
a trajectory for a foot, we might want to restrict the whole foot to this surface
element. The corresponding constraint on our trajectory would be

A7(t;) < b — ediag(AT A") (12)
whereby we have A = {a1, -+ ,ap} and A" = {a}, -+ ,ap} with a, = ay —
(af ap)ay
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