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Outline. This document explores the concepts of homotopies and local min-
ima in robot motion planning. Homotopies describe continuous deformations
between paths, partitioning the path space into homotopy classes. Local min-
imum classes, defined by path optimization methods, offer a finer, more prac-
tical partitioning. I compare those concepts and discuss why local minima
classes can be more useful to partition the path space.

Let X be a configuration space of a robot for which we like to generate
motions. In point-to-point motion planning [LaValle, 2006], an initial configu-
ration a and a goal configuration b are given, and we are tasked to find a path
between them. This defines a point-to-point motion planning problem, which
can be written as a tuple (X, a,b). To solve such a motion planning problem, we
need a motion planning algorithm (also called a motion planner) which takes
(X, a,b) as input and which produces a path. A path is defined as a continuous

function on X as
p:[0,1] = X. (1)

The space of paths on X is then denoted as
F={p:[0,1] = X | p is continuous}. (2)

Using the path space, we can define a motion planner as a function which takes
two configurations as input and produces a path [Farber, 2003]. This can be

written as
s: X xX—=F. (3)

Given initial and goal configurations a,b € X the solution space (codomain) of
a motion planner will be the subspace

Far =A{p € F | p(0) = a,p(1) = b}. (4)

We like to investigate this path space Fy; for a given motion planning problem
and explore different concepts to partition this space.



1 Homotopies

The first concept to partition a path space is homotopy. A homotopy is a
continuous deformation of a path into another path. It can be shown that the
concept of homotopy creates equivalence classes which in turn partition the path
space. Let us see how this works.

Let f,g € Fap be two paths in the subspace Fu,. We say that f and g
are deformable into each other if there exists a continuous function H(s,t) :
[0,1] x [0,1] = X with H(0,t) = f(t), H(1,t) = g(t). This function H is called
a homotopy [Munkres, [2000, [Farber, (2003, [2008].

If there exists a homotopy between two functions f and g, we write this
as f ~ ¢ and say that f is homotopic to g. It is important to note that the
relation ~ is an equivalence relation on the space of paths, i.e. it is symmetric,
reflexive, and transitiveﬂ This is important, because an equivalence relation has
the property that it will partition the underlying space into equivalence classes,
thereby creating distinct regions [Munkres|, 2000].

The equivalence classes which are defined by the homotopic equivalence re-
lation are called homotopy classes and we denote them as H,. We can then

write Fgp as
]:ab = |_| Haa (5)
ael

whereby we use the | | operator to emphasize that the H,, sets do not overlap,
ie. if o, 8 € I, a # B, then H, N Hz = (). The index I denotes the set of all
homotopies on Fgup.

2 Linear Homotopies

A homotopy is one way to deform a path into another path. However, it is not
the only way. For example, we could define a weaker version of homotopy, where
two paths are only deformable into each other when they can ”see” each other,
i.e. there is a straight line connection between them. We call this a linear (or
straight line) homotopy |Munkres| [2000, [Jaillet and Siméon| [2008].

Linear homotopies are defined as follows. We say that f and g are linearly
deformable into each other denoted as f ~ g if there exists a linear homotopy
H(s,t) = (1 —8)f(t) + sg(t). In that case we say that f is linearly homotopic
to g. Note that the relation ~ is not an equivalence relation anymore. It is
symmetric and reflexive but not transitive. To see this, imagine a path for a
point in 3-dimensional space. Let us imagine that there is a tall mountain on a
planar field and that we define three paths starting from the same start position

A relation ~~ is an equivalence relation on a set X [Munkres| 2000, if the following properties

hold for any elements a,b,c € X.
1 o Reflexivity: a ~ a.
e Symmetry: If a ~ b, then b ~ a.

e Transitivity: If a ~ b and b ~ ¢ then so is a ~ c.



in front of the mountain to the same goal position behind the mountain. Let us
define the first path p, going left around the mountain, a second path p, going
over the mountain, and a third path p. going right around the mountain. We
can linearly deform p, to p, (because they can see each other), and pj to p., but
we cannot linearly deform p, to p., because the mountain blocks the way. This
violates the transitive property of equivalence relations. The linear homotopy
thus does not create a partitioning anymore, but instead it creates something
we call a covering, where sets can overlap. Such a covering is related to the
homotopy classes as Ho = (Jge s, Lag such that

Fa= ] U Las. (6)

a€el ﬁeJa

whereby the | J operator is used to denote possible overlapping sets and J,, is
the set of linear homotopies in homotopy class «.

It can be readily seen that the linear homotopy relation induces a finer
decomposition of the path space. This intuition can be visualized by analyzing
the path space of a simple spherical spacecraft in 3-dimensional space, when it
has to navigate through a small asteroid field. While each path of this spacecraft
might go around different asteroids, make turns, and meander around, in the
end we can always stretch each path until it can be moved outside the asteroid
field |Orthey et all|2020]. In this case, any path can be continuously deformed
into any other, and we end up with a single homotopy class. However, the
asteroids would split the paths into linear homotopy classes (because paths
might fail to see each other) which together would cover the path space of our
spacecraft. We can say that the linear homotopy induces a finer decomposition
as the homotopy decomposition.

While linear homotopies are more practical than homotopies [Jaillet and
Siméon), |2008], they do not create equivalence classes, which makes them often
difficult to deal with.

3 From Homotopies to Local Minima

While homotopy is an intuitive, rigorous concept, it is, however, difficult to
compute efficiently. Finding a homotopy to deform one path into another can
be almost as hard as solving a motion planning problem itself [Bhattacharya
et al) 2018]. It is therefore difficult to talk about homotopy classes, because
computing them is computationally impracticable. Moreover, as some of the
above examples have shown (point in asteroid belt), many realistic scenarios
have a single homotopy class, thereby making it of limited value for motion
planning, especially when we want to scale to higher-dimensional spaces.
Instead of homotopies, I like to shift our focus to a similar, but more efficient
operation. This operation is path optimization. Path optimization is already
used by many motion planning algorithms, often as a post-processing step to
deform a path into a more optimal path |[Zucker et al., |2013 [Toussaint, (2014,



Kamat et al.| [2022]. Tt turns out that this is a computationally efficient way to
achieve a practical partitioning of the path space.

To understand this, let us look closer at path optimization. Let ¢ : Fup, —
Fab be a path optimizer. This path optimizer takes as input a path in F,; and
returns another path in Fy;, which is hopefully more optimal with respect to
some internal optimization criterion. One can think about such a path optimizer
¢ as having multiple regions of attraction in F,;, where every path is optimized
to a common locally minimal (optimal) path p*. Note that those regions do not
overlap.

Given two paths f and g in Fgp, we can thus define an equivalence relation

f g g. This equivalence relation defines both paths to be equivalent, if, after
application of ¢, they converge to the same local minima path p*. Note that this
is again symmetric, reflexive, and transitive. Thus we arrive at a decomposition

of the path space as
]:ab:|_| |_| Pa,ﬂv (7)
ael BeJy

whereby each equivalence class P, g is associated with a specific local minima
path pj, 5 to which any path in P, g converges to. This is a finer partitioning
than homotopy classes, but more efficient. Given any two paths, one can readily
check if the associated path optimizer converges to the same path [Orthey et al.
2021].

4 Conclusion and Summary

Homotopies have been well-studied in motion planning [Jaillet and Siméon)
2008, Bhattacharya et all 2018], but they have limited applicability to path
planning because they are often impracticable to compute. Instead, the concept
of local minima shows a better alternative. To this end, here is some actionable
advice.

e Homotopies, especially in higher-dimensional spaces, are difficult to com-
pute and often highly non-intuitive. Let us therefore replace homotopy
with the concept of local minima classes.

e If we want to generate a minimal set of paths to cover the path space, it
should be our goal to have paths in each local minimum class, not in each
homotopy class [Orthey et all, 2021].

e If we want to learn a diverse set of paths, local minima classes are an
efficient way to accomplish this.
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