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The principle of maximum entropy [Jaynes, 2003] is a method to choose a
probability distribution for a random variable amid partial information. The
principle states that we should choose a distribution that maximizes the amount
of uncertainty and gives us the least biased guess given all the information we
have. In simple terms, we want a distribution that does not favor any event
over another—unless we have concrete evidence to the contrary.

Let a random variable X be given with events A = {a1, . . . , aN} and corre-
sponding, unknown probabilities P = {p1, . . . , pN}. The entropy of this random
variable is defined as

H(p1, . . . , pN ) = −
∑

pi ln(pi), (1)

subject to pi ≥ 0 and
∑

pi = 1, where summation is implied over i = 1 to N .
If you encounter this equation for the first time, you may need some time to

process it. It helps to ask and answer some elementary questions:

• How can we optimize Eq. (1), especially when other information, like the
mean, is available? (⇒ Sec. 1)

• What is a toy example to help us get a better feel for the problem? (⇒
Sec. 2)

• Why is entropy defined as it is, and how does it reflect our ignorance?
Couldn’t we just assign 1

N or something else to every event? (⇒ Sec. 3)

I will try to answer these questions as best I can in the following sections.
Please feel free to skip to whichever question you find most interesting.

1 Solution to the Maximum Entropy Problem

To solve Eq. (1), we need to optimize under the constraint that
∑

pi = 1. One
compelling approach is the Lagrange multiplier method [Bertsekas, 2014], which
takes constraints directly into account using the Lagrangian function. For our
case, we define the Lagrangian as

L(p1, . . . , pN ) = −
∑

pi ln(pi)− λ
(∑

pi − 1
)
, (2)
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where λ is the Lagrange multiplier. Eq. (2) can be solved by taking the deriva-
tives with respect to the probabilities and the Lagrange multiplier and setting
them to zero, since the derivatives must vanish at the maximum point. This
gives

dL

dpi
= 0,

dL

dλ
= 0. (3)

Suppose we want to add additional information to this function, for example, a
known mean E[X] = m of the distribution. We can do this by adding another
term as

L(p1, . . . , pN ) = −
N∑
i=1

pi ln(pi)− λ
(∑

pi − 1
)
− µ (E[X]−m) . (4)

2 Example with a (Loaded) Die

Let us consider an example where our random variable is a six-sided die. First,
we consider the case where no other information is available. To find the solution
to Eq. (2), we first compute the derivative with respect to pi as

dL

dpi
= −(ln(pi) + 1)− λ. (By the product rule)

This derivative must evaluate to zero at the maximum point. This gives us
ln(pi) = −(λ+ 1), for which the solution is pi = e−(λ+1). Putting this into the
derivative for λ, we get

dL

dλ
=

∑
pi − 1 = Ne−(λ+1) − 1. (5)

Setting this to zero, we obtain a solution for pi as e
−(λ+1) = 1

N = pi. We stop
at this point, since we have found our distribution. Earlier works have denoted
this result as the principle of indifference [Keynes, 1921, Jaynes, 2003], since no
event is favored. The histogram below shows the values of this distribution.
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2.1 An Unexpected Mean

With no constraints, we assign pi =
1
N to the probabilities of a die. However,

once constraints are added, things become more interesting.
Suppose we know from experiments that our die has an unexpected mean

value of E[X] =
∑

i · pi = 4 (note that a fair six-sided die would have a mean
value of 3.5). Let us add this as an additional constraint. Our Lagrangian in
this case is

L(p1, . . . , pN ) = −
N∑
i=1

pi ln(pi)− λ
(∑

pi − 1
)
− µ

(∑
i · pi − 4

)
.

To find our solution, we first evaluate the derivatives as

dL

dpi
= −(ln(pi) + 1)− λ− iµ,

dL

dλ
=

∑
pi − 1,

dL

dµ
=

∑
i · pi − 4.

We can then evaluate pi as a function of λ and µ as

pi = e−(1+λ+iµ) =
e−iµ

e1+λ
.

Using this, we substitute pi into the two constraints to yield

1

e1+λ

(
e−µ + e−2µ + e−3µ + e−4µ + e−5µ + e−6µ

)
= 1, (6)

1

e1+λ

(
e−µ + 2e−2µ + 3e−3µ + 4e−4µ + 5e−5µ + 6e−6µ

)
= 4. (7)

These are two equations with two unknowns. Let us simplify by setting x = e−µ

to get

1

e1+λ

(
x+ x2 + x3 + x4 + x5 + x6

)
= 1,

1

e1+λ

(
x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6

)
= 4.

We can equate and rearrange these equations to yield

(x+ 2x2 + 3x3 + 4x4 + 5x5 + 6x6)− 4(x+ x2 + x3 + x4 + x5 + x6) = 0.

After further simplification, this yields

−3x− 2x2 − x3 + x5 + 2x6 = 0.
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Since x > 0, numerical evaluation yields one real root at x ≃ 1.191. This directly
yields µ = − ln(1.19) ≃ −0.174625. Substituting into Eq. (6), we get

λ = ln
(
x+ x2 + x3 + x4 + x5 + x6

)
− 1,

which gives λ ≃ 1.44701. This yields the desired values pi, which we can plot
to obtain the following distribution:
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We see that this distribution is skewed toward higher values, which reflects
the higher mean value. Note that we obtained this distribution solely from the
given mean value together with the principle of maximum entropy.

3 Why is Entropy Defined as It Is?

If you encounter Eq. (1) for the first time, it might look strange, and you
might wonder why entropy is not defined differently. To be fair, there are many
possibilities. For example, we could minimize the distance between probabilities
as ∥pi − pj∥ or maximize the squared values p2i , or do something else. Why do
we insist on the structure of Eq. (1), and where does it come from?

It turns out that Eq. (1) is forced upon us once we clearly define the con-
ditions we want our function to have. Let us assume that we want to find a
functionH(p1, . . . , pN ) that is maximal for a distribution that is maximally non-
committal and favors no event over another Jaynes [2003]. What mathematical
properties should such a function possess?

• Additivity Property. If two events p and q are independent, then H
should be an additive function of them, i.e., H(p, q) = H(p) +H(q).

• Continuity Property. H should be a continuous function of probabil-
ities pi, since small changes in pi should correspond to small changes in
H; otherwise, we could get large jumps in H.

1Finding roots of a polynomial is a subject in itself, and many algorithms exist to find all
roots, such as the Durand-Kerner method Durand [1960], Kerner [1966]. To obtain this result,
we queried Wolfram Alpha https://www.wolframalpha.com/.
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• Maximum on Uniformity. Entropy should reach its maximum when
all probabilities are equally likely.

• Symmetry Property. If the probabilities are permuted in any way,
the result should remain the same; i.e., if we relabel but retain the same
values, we should expect the same output.

These are relatively mild, sensible properties on which we can all agree.
However, Eq. (1) then appears as a logical consequence Jaynes [2003].

3.1 Derivation of the Entropy

We are thus searching for a function H(p1, . . . , pN ) that fulfills the above-
mentioned properties. First, let us clarify what H should represent. Given
a set of events, H should measure the uncertainty of the events. Consider the
six-sided die. If all outcomes are equally likely, H should attain its maximum. If
the die always shows 6 on every throw, the uncertainty is zero. However, every
event has its own uncertainty. To bring them together, the only reasonable way
to formulate H is as an average uncertainty over all events, where each event
contributes uncertainty based on the probability of the event occurring. Since
H is supposed to be continuous and additive, we arrive at the form

H(p1, . . . , pN ) =

N∑
i=1

pih(pi), (8)

where h is a continuous function of pi, representing the uncertainty of a specific
event. Let us investigate the structure of this h function.

For that, assume we have two independent events with probabilities p and
q. When we compute the uncertainty h(pq), it should be additive, i.e., h(pq) =
h(p)+h(q), since the events are independent. What form could h have to fulfill
this?

To see this, let us substitute p = ex and q = ey to yield h(ex+y) = h(ex) +
h(ey). Define a new function f(x) = h(ex), which gives

f(x+ y) = f(x) + f(y). (9)

This is Cauchy’s functional equation Jurkat [1965], which has a unique so-
lution f(x) = kx with k being a constant (for f continuous). Thus, we have
h(p) = h(ex) = f(x) = kx. Since h(ex) = kx, h must be the inverse of the
exponential function, which is the logarithm. Thus, we arrive at h(p) = k ln(p).

Note that both h(p) = k ln(p) and h(p) = −k ln(p) are valid solutions. To
resolve this, consider the Maximum on Uniformity property. If we use the
positive term, we would reach a minimum of the function when all probabilities
are equivalent. The negative term gives the maximum, as desired. Thus, h(p) =
−k ln(p) fulfills this property. Any logarithm will suffice, so we choose the
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natural logarithm and set k = 1. We then arrive at the full equation for the
entropy as

H(p1, . . . , pN ) = −
N∑
i=1

pi ln(pi). (10)

Consider the six-sided die again. If all events are equally likely, we get
H = −

∑N
i=1

1
6 ln

(
1
6

)
≃ 1.79. However, if one event is certain (e.g., we always

throw a six, i.e., p6 = 1), we get H = −1 · ln(1) = 0, as desired.
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