Probabilistic Completeness Proofs for
Sampling-Based Motion Planning

Andreas Orthey
August 2024

This document details how a proof of probabilistic completeness can be
constructed for sampling-based motion planners [I]. Probabilistic completeness
means that a motion planner will find a solution if one exists if time goes to
infinity [2]. The proof covers tree-based planners like the rapidly-exploring
random tree (RRT) [3] and relies on some mild assumptions, namely that the
configuration space is well behaved [4], that it has an attached metric, and that
there exists a feasible path with e clearance to any constraints. Given those
assumptions and a motion planner, we can use the series-of-discs argument [5, [6]
to verify that the motion planner fulfills probabilistic completeness.

1 Motion Planning Problem

Let X a configuration space [2] and Xpee the constraint-free region of the con-
figuration space (i.e. avoiding obstacles, respecting joint limits, etc). A motion
planning problem is defined as the tuple (X, Xee, 21, Xg) With 27 € Xgree be-
ing an initial configuration, X C Xgee a goal region, and the task being to
find a path p : [0,1] = Xfee (2 continuous mapping) which connects the initial
configuration (p(0) = x;) with the goal region (p(1) € X) while staying in the
constraint-free region of the configuration space.

1.1 Probabilistic Completeness

Let A be a motion planner, i.e. an algorithm which solves motion planning
problems (X, X¢ee, 21, X) by computing paths connection initial configuration
to goal region.

We say that A is complete, if it finds a solution if one exists or to correctly
report that no solution exists. This is a desirable property of any planning
algorithm, because it gives us a guarantee that eventually we will find a valid
solution if there is one.

Probabilistic completeness is a weaker notion as completeness and is defined
as: A will find a feasible path if one exists when time goes to infinity. Note the
difference to completeness in that it will not report that no solution exists, i.e.
if there is no solution, a probabilistically complete planner would not terminate.

2 Proof of Probabilistic Completeness

The proof idea is relatively straightforward and done by construction through
induction. While this works for many different motion planners, we concentrate
here on tree-based planners which are relatively easy to define [2].

Here is the high-level proof idea. First, we assume that there exists a feasible
path in our configuration space for a given motion planning problem. Second,
we then cover this path by a set of overlapping discs of a certain size §. Given
this representation, we then reason by induction, whereby we first prove the
base case that we can reach the first disc, and then we prove the induction step
namely that our algorithm will reach a disc k + 1 if it has already reached disc
k. Let us look at this proof in detail.

2.1 Step 0: Algorithm Structure

While the proof can be adapted to almost any planner to show probabilistic com-
pleteness, we focus in this document on tree-based sampling-based planners [3],
who’s structure is detailed in Alg. This tree-based planner takes a motion
planning problem as input (Line 1) and returns a path from the initial configu-
ration to the goal region (Line 2). The planner first initializes a tree (Line 3),
with the initial configuration as root node, and then enters a while loop (Line
4). In each iteration of this loop, the planner samples a random configuration
(Line 5), computes the nearest configuration in the tree (Line 6), and connects
both (Line 7) if possible. Finally, the planner checks if a solution exists in the
tree (Line 8), and returns a feasible solution path on success (Line 9). This is
the basic structure which underlines several tree-based planners like RRT [3]
or the expansive space-trees (EST) planner [7]. Those planners, however, differ
significantly in how the sampling and nearest functions are implemented.

Algorithm 1 Tree-Based Sampling-Based Motion Planning
Input: Start configuration xi,i;, Goal region X, Configuration space X
Output: Path 7 from xj,i; to Xg
Initialize tree T' < {Zinit }
while True do

Zyand < Sample(X)

Znear < Nearest(T, Tranq)

Tnew < ConneCt(xncar; xrand)

if SolutionExists(T") then

return Path(7T')

end if

. end while

— =
= O

Figure 1: Covering a path of € clearance with §-spaced discs of radius 9.

2.2 Step 1: Assumptions

Let us first state all the required assumptions. Note that they all are relatively
mild, i.e. this is actually fulfilled by most motion planning problems in real
scenarios.

1. There exists a feasible path connecting start to goal. If such a path does
not exist, the behavior of Alg. []is undefined.

2. The feasible solution path has ¢ > 0 clearance, meaning the distance
between the path image and the constraints on the configuration space is
at least e. If this is not the case, sampling-based planner will not be able
to find solutions.

3. There exists a sampling function f on X which returns a dense set of
samples on the configuration spaceﬂ

4. If two points z,y € X have a distance of d between them, then we can
always construct a path segment (an edge) between x and y of length
smaller or equal to d.

What do those assumptions mean in practice? Assumptions 1 and 2 mean
a restriction of the proof to a certain subclass of problems. Namely problems
which have a solution (Assumption 1), and problems in which the robot is not
touching the environment (Assumption 2). Assumptions 3 and 4 are additional
properties of the algorithm itself, namely that the sampling function is uniform
(Assumption 3) and that the connection between two configurations is consistent
with the metric used (Assumption 4).

2.3 Step 2: Cover feasible path with discs

Let us conduct the first construction step in our proof, namely to cover a feasible
path with a sequence of discs. For that, we use the assumption that there exists

1Recall that a sequence is said to be dense on a configuration space X if every point of X
is arbitrarily close to a member of the sequence [4].

Figure 2: The tree of Alg. [1| (green) has reached disc k. To prove the induction

step, we need to show that once we reach disc k, we will eventually reach disc
k 4 1 in some future iteration of the algorithm.

some feasible path (Assumption 1) and that this path has at least e > 0 clearance
to the environment (Assumption 2). To compute discs, we have to chose their
radius and their spacing along the path. One option is to choose a § radius given
by § = § and to create J-spaced discs along the path which have ¢ radius. Fig. |I|
shows schematically how this would look like. Note that since € is a positive
number, there always exists some § for which we can construct the discs.

2.4 Step 3: Induction Base Case and Induction Step

Once we have constructed a series of discs along the path, we can conduct
the main proof step, namely to show that this path is eventually found by using
Alg.[1] To do this, we use the method of mathematical induction, which requires
two steps: We need to show that the first disc is reached (induction base case),
and we need to show that disc k+1 is reached once we reach & (induction step).
With this, we would have proven that the path is found.

Let us prove those two steps. First, let us verify the base case, which is
that our algorithm will reach the first disc in the sequence. Since the first
disc contains the start configuration, we only need to ensure that the start
configuration is added. This is fulfilled for example by RRT, since it creates a
search tree with the start configuration as its root.

Second, we need to verify the induction step. Let us assume that there are
K discs in the sequence and that we reached disc k along the way. We want
to show that given that we reached disc k, we will eventually reach disc k + 1.
See Fig. [2| for clarification. To accomplish this, we first use the fact that the
overlap of the discs has non-zero volume. Since our sampling sequence is dense
(Assumption 3) we will eventually draw a sample inside of the overlap region.
This new sample will have a distance upper-bounded by 2§ (the diameter) to
the sample in disc k. That means that this sample is either the nearest or there
exists a nearer one. However, if another sample exists, which is nearer, than this
has to be distance bounded by 2§ < e (Assumption 4), and thereby lie inside the
e-neighborhood of the path. This shows that the new sample will be connected
to the tree, which concludes our proof.

3 Conclusion and Limitations

We presented a proof of probabilistic completeness for sampling-based motion
planners. While this proof is general and could be applied to any sampling-based
motion planners, we have focused here on tree-based planners.

There are two limitations of this proof concerning optimality and dynamics.
While this proof works for probabilistic completeness, you cannot exchange
feasible paths in the proof with optimal paths and thereby extend the proof
to prove optimality or asymptotic optimality. This requires a slightly different
approach, whereby we need to ensure that all past discs have also been reached
(and not only the k-th disc) [§].

Another limitation are kinodynamic systems like a kinematic car. It turns
out that this proof can only be extended for such systems if a steering function
exists [2], and if we know that this steering function is bounded in length [5].
This means that if two configurations are a distance d apart, the steering func-
tion should produce a path with length bounded by some function of d. If this
is the case, we can always make small discs which keep the steering bounded,
and thereby extend the proof to kinodynamic systems.

References

[1] Andreas Orthey, Constantinos Chamzas, and Lydia E. Kavraki. Sampling-
based motion planning: A comparative review. Annual Review of Control,
Robotics, and Autonomous Systems, 7(1):285-310, 2024.

[2] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[3] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach
to single-query path planning. In IEEFE International Conference on Robotics
and Automation, volume 2, pages 995-1001. IEEE, 2000.

[4] James Raymond Munkres. Topology. Prentice Hall, Upper Saddle River,
NJ, 2 edition, 2000.

[5] Petr Svestka and Markus Hendrik Overmars. Probabilistic path planning.
In Robot motion planning and control, pages 255-304. Springer, 2005.

[6] Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. Task space
regions: A framework for pose-constrained manipulation planning. The In-
ternational Journal of Robotics Research, 30(12):1435-1460, 2011.

[7] David Hsu, J-C Latombe, and Rajeev Motwani. Path planning in expansive
configuration spaces. In International conference on robotics and automa-
tion, volume 3, pages 2719-2726. IEEE, 1997.

[8] Kiril Solovey, Lucas Janson, Edward Schmerling, Emilio Frazzoli, and Marco
Pavone. Revisiting the asymptotic optimality of rrt. In IFEE international
conference on robotics and automation, pages 2189-2195. IEEE, 2020.

	Motion Planning Problem
	Probabilistic Completeness

	Proof of Probabilistic Completeness
	Step 0: Algorithm Structure
	Step 1: Assumptions
	Step 2: Cover feasible path with discs
	Step 3: Induction Base Case and Induction Step

	Conclusion and Limitations

