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Uniform sampling of spaces is fundamental to many algorithms like Monte
Carlo methods Kroese and Rubinstein [2012] or sampling-based planning Orthey
et al. [2024]. However, when the spaces are non-euclidean, it is often difficult
to generate uniform samples. Even for simple non-euclidean spaces like the
sphere, it is not trivial to sample uniformly Yershova and LaValle [2004]. If
spaces become more complicated, it is sometimes almost impossible to find a
sampling sequence which is really uniform.

Fortunately, there exists a method to generate uniform sampling sequences
for parameterized surfaces, which is called curvature-based rejection sampling
Williamson [1987].

1 Curvature-Based Rejection Sampling

The curvature-based rejection sampling method Williamson [1987] is able to
generate uniform sampling sequences over arbitrary parameterized surfaces.
This method works for parameterized surfaces which are defined by mappings
f : (u, v) → (x, y, z). The norm of the gradient of this mapping gives a mea-
sure of the curvature of this space. Note how the curvature is important for
sampling:

• If a point of the space has a high curvature (small norm of the gradient),
there are sharper bends at this point, and consequently smaller surface
area elements. Sampling should be less in those areas.

• If a point of the space has a low curvature (high norm of the gradient),
the area is relatively flat, and the surface area element larger. Sampling
should be higher at those areas.

This curvature-based rejection sampling method Williamson [1987] exploits
this fact by utilizing the norm of the gradient as a proxy for curvature and
rejecting points more often in high-curvature areas.

The full algorithm is shown in Alg. 1. It takes as input the coordinate
mapping f : (u, v) → (x, y, z) and the maximum norm gradient on the surface
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nmax. The output is a sample drawn from the parameterized surface which is
uniformly distributed. This works in the following way. First, we loop while we
found a sample (Line 1). We sample points (u, v) (Line 2,3), and compute the
norm gradient on the surface (Line 4). This gradient is normed over the surface
by dividing through the maximum gradient norm (Line 5). We then sample a
random number in [0, 1] (Line 6) and check if the normed gradient is above this
number. If yes, we accept the sample and return the surface point. If not, we
reject the sample and continue.

Algorithm 1 Curvature-Based Rejection Sampling

Input: f : (u, v)→ (x, y, z), nmax

Output: Uniform Sample (x, y, z)
1: while True do
2: u← UniformSampling(U)
3: v ← UniformSampling(V )
4: n← GradientNorm(f, u, v)
5: nnormed ← n/nmax

6: r ← UniformSampling(0, 1)
7: if nnormed ≥ r then
8: return f(u, v)
9: end if

10: end while

2 Practical Considerations

If this method is to be implemented for a new space, there are two important
considerations. First, the gradient has to be computed, which is often difficult
to do in practice. It is recommended to use a symbolic representation of the
coordinate mapping f : (u, v)→ (x, y, z) and then use tools like SymPy Meurer
et al. [2017] to compute a symbolic formula of the derivation of this mapping.
This has been used, for example, to compute the gradient on the Klein bot-
tle Orthey et al. [2021]. Second, the maximum norm gradient nmax has to be
known for this method to work. This is sometimes available if the spaces are
well known like spheres or ellipsoids. However, for general spaces, this value has
to be estimated. One method is to sample a large number of points and com-
pute the maximum gradient norm over them. If this should be done online, one
can use a burn-in period for the sampler, where the maximum gradient norm is
directly computed and constantly updated from the samples drawn. This would
give a wrong distribution in the beginning, but would converge more and more
to a uniform distribution when the correct maximum norm gradient is known.
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