BERLIN INSTITUTE OF TECHNOLOGY

A THESIS SUBMITTED FOR THE DEGREE OF
MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING

Optimizing Motion Primitives
to Integrate
Symbolic and Motion Planning

Author: Supervisor:
Andreas ORTHEY Prof. Dr. Marc TOUSSAINT

Second Supervisor:

Prof. Dr. Oliver BROCK
Thesis Advisor

Dr. Tobias LANG

September 4, 2012

Abstract

To advance current robot technology, we think it essential for a robot to au-
tonomously execute a high-level task like “clean up the room”. One fundamental
problem of this execution is how we can translate the high-level task into a motion
trajectory of the robot. Usually, this is approached by using two separated planners:
A symbolic planner and a motion planner. But this separation often fails to find a
successful plan, due to the abstractness of the symbolic planner or uncertainty in the
environment. We therefore describe an approach to increase the probability to find a
successful motion trajectory, by using a closer integration of symbolic planning and
motion planning. This integration is accomplished by defining a motion primitive for
each symbolic action, which describes the constraints of the underlying motion planner.
Each motion primitive is then optimized with respect to the success of a symbolic ac-
tion, by using covariance matriz adaptation (CMA). Eventually, we conducted a series
of simulated experiments, to show that this approach is able to increase the probability
of a successful motion trajectory, and that we can use the optimized motion primitives
to generalize to unseen scenarios.

Zusammenfassung

Um heutige Robotik Technology voranzubringen, ist es essentiell, dass ein Roboter
abstrakte Aufgaben, wie z.B. “Réaum das Zimmer auf”, autonom ausfithren kann. Ein
Kernproblem dieser Ausfiilhrung beinhaltet, dass wir die abstrakte Aufgabe in einen
Bewegungsplan des Roboters iibersetzen miissen. Um dieses Problem zu l6sen wer-
den normalerweise zwei getrennte Planner benutzt: Ein Symbolischer Planner und
ein Bewegungsplanner. Diese Trennung fiihrt jedoch zu weniger erfolgreichen Plan-
nungen, da erstens der Symbolische Planner zu abstrakt ist, und zweitens, da diverse
Unsicherheiten in der Umwelt existieren. Daher ist das Ziel dieser Arbeit einen Ansatz
zu beschreiben, wie wir die Wahrscheinlichkeit von erfolgreichen Plannungen erhchen
kénnen, indem wir Symbolisches Plannen und Bewegungsplannen integrieren. Diese In-
tegration wird erreicht, indem wir fiir jede symbolische Aktion ein Bewegungs Primitiv
definieren, welches die Randbedingungen des Bewegungsplanners beschreibt. Unsere
Hauptbeitrag ist dann, dass wir diese Bewegungs Primitive optimieren, hinsichtlich
ihrer Wahrscheinlichkeit, dass sie zu erfolgreichen Plannungen fithren. Dazu benutzen
wir die Optimierungsstrategie covariance matriz adaptation (CMA). In simulierten
Experimenten zeigen wir anschlielend, dass dieser Ansatz die Wahrscheinlichkeit von
erfolgreichen Plannung erhoht, und dass wir die optimierten Bewegungs Primitive be-
nutzen konnen, um auf unbekannte Situationen zu verallgemeinern.

Contents

1 Introduction 1
1.1 Contributions 2

1.2 Definitions and Outline 3

II Background in Symbolic and Motion Planning 5
2.1 Symbolic Planning with Relational Representations)
2.1.1 Relational Representations 6

2.1.2 Uncertainty in Symbolic Representations 7

2.1.3 Probabilistic State Transitions 7

2.1.4 Symbolic Planning with PRADA 8

2.1.5 Open problems of symbolic planning 9

2.2 Motion Planning by Inference 10
2.2.1 From Motion Planning to Stochastic Optimal Control 10

2.2.2 Casting SOC as an Inference Problem 11

2.2.3 Task Variables and Task Targets 13

2.2.4 Precision of Task Variables 13

IIT Related Work 15
3.1 Combination of Symbolic and Motion Planning 15
3.1.1 Hierarchical Top-Down Approach 16

3.1.2 Heuristics to predict Feasibility of Symbolic Actions 17

3.1.3 Bottom-Up: Symbolic State from C-Space 18

3.2 Motion Primitives 21
3.2.1 Attractor Based Models 21

3.2.2 Via Point Models oo 22

3.2.3 From Motion Primitives to Motion Planning 22

IV Integrating Symbolic and Motion Planning 25
4.1 Formalization of a Motion Primitive P 26
4.2 Objective Function from P L. 28
4.3 Mappings to evaluate a(P) Lo 29
431 Wop .o o oo 32

432 Way . oo 35

4.4 Covariance Matrix Adaption (CMA) to Optimize P 36
4.5 Final Remarks on Optimizing P 37
4.5.1 General Assumptions 37

4.5.2 Time for Offline Optimization 38

V Experiments 39

5.1 Optimizing Grasping Action 42

5.2 Optimizing Placing Action 50

5.3 Optimizing Homing Action 56
5.4 Discussion of Results 61
VI Conclusion s, 62

6.1 Future Research Directions 63

Chapter 1

Introduction

A desirable scenario for an advanced robotic system is the ability to execute a high
level task like “clean up the room”. Such a task can be divided into smaller subtask
like “grasp coffee mug” and “place coffee mug in dishwasher”. Each of those subtasks
has to be executed on the motion control level, which means that we need to find a
trajectory, consisting of joint torques of the robot.

This possesses still a fundamental problem for robotics and artificial intelligence,
mainly because it was assumed, that we can separate the problem by using symbolic
planning and motion planning independent of each other. If we follow this separation,
we can regard each subtask as a motion planning problem. But there are several diffi-
culties with this view. First, the symbolic planner is ignorant of the physical constraints
of the environment and can therefore easily lead to non-optimal plans on the motion
level. Second, a symbolic planner ignores what happens during the transition from one
state to another, which means that the correct next state can be reached, even if the
robot is damaged during the transition. Third, the symbolic planner cannot predict
or circumvent high risk actions, which can lead to irreversible situations. All three
difficulties have a common cause, namely that the abstraction level of the symbolic
planner is too high.

We therefore propose to integrate symbolic and motion planning, in order to in-
crease the probability, that a symbolic action is successful. A successful symbolic action
will be achieved, if we found a trajectory on the motion planning level, which reaches
the desired symbolic state. We will call such a trajectory feasible, and the corresponding
symbolic action likewise feasible. The feasibility of a symbolic action is demonstrated
in Figure 1.1. A symbolic action GraspCylinder(X) has to be translated into a robot
trajectory. If we face uncertainty, the desired effect inhand(X) is not deterministic,
but will have a certain probability to be feasible. In this example, we have obtained a
value of 0.6, which means, that the robot on the right is able to grasp the cylinder in 60
percent of the cases. The goal of this thesis is to increase this probability, in order to
end up with symbolic actions, which are more robust against noise. To make this clear,
we want to state the central question, which we try to answer in the following chapters:

GraspCylinder(X):
on(X,Y), cyl(X)

0.6 inhand(X) =
— 0.2 onFloor(X)
0.2 noise

Figure 1.1: The symbolic action GraspCylinder has to be translated into a trajectory
of the robot. In this example, the transition probability to reach the effect inhand(X)
is 0.6, which means, that the robot can only grasp the cylinder in 60 percent of the
cases.

How can we increase the transition probability of a desired outcome of
a symbolic action?

1.1 Contributions

Our answer to the above stated question is a closer integration of symbolic and motion
planning. Our starting point is the observation, that each motion planning algorithm
has to be defined by a set of constraints. Those constraints define for example that
collisions with objects and joint limits should be avoided. Different symbolic actions
need different constraints to be satisfied. For example, if we want to grasp an object,
we want the hand of the manipulator to open slowly during the execution. Each sym-
bolic action will have a set of constraints, which we will henceforth call task variables.
Given a set of task variables, we can already use a motion planner to find a feasible
trajectory, which satisfies all constraints. But if we face uncertainty, it is important
to find not only a feasible trajectory, but an optimal trajectory, which finds the best
possible trajectory, given the constraints. This helps us to achieve more robust results.

To describe an optimal trajectory, we need to define a cost function, including all
task variables. Thereby, we have to consider, that not every variable is equally impor-
tant. For example, colliding with a wall should be avoided at all costs, while opening
the finger before a grasp is less important. We will call these importance variables

precision parameters. To specify those parameters becomes difficult, if the number of
variables increases. A manual specification is tedious and needs to be done by trial
and error.

Our contribution in this thesis will be to automatically optimize the precision pa-
rameters for each symbolic action. Each set of parameters for one symbolic action
constitutes a motion primitive, which defines how the motion planner is constrained.
The goal will be to find the precision parameters for each symbolic action, which in-
crease the desired transition probability. We will refer to this transition probability in
this thesis as success rate . To evaluate this success rate , we need to compare the preci-
sion parametersto each other. To be able to do this, we created a fixed set of scenarios,
where the robot has to execute the symbolic action. We then measured the success
rate over all scenarios, together with important physical variables, which characterize
the trajectory. We used them to create a scalar value v, inversely proportional to the
success rate . This value v is the output of our objective function, which converts the
input precision parameters into v, by using a motion planner and an evaluation of the
final trajectory. To optimize this objective function, we used a evolutionary strategy
algorithm called covariance matriz adaption (CMA).

We were able to show empirically, that the success rate indeed increases if we
optimize the precision parameters, for a given set of scenarios, and that it outperforms
manually specified parameters by an expert. Eventually, we conducted an experiment
to test, if the optimized parameters generalize to unseen scenarios. We could show,
that in random scenarios, the optimized parameters improved the number of feasible
plans, in comparison to manually specified ones.

1.2 Definitions and Outline

In artificial intelligence research, it is common to refer to any system, which “can be
viewed as perceiving its environment through sensors and acting upon that environment
through actuators”, as an agent (Russell and Norvig, 2010)[p. 34]. Because our work is
specifically interested in planning in real world environments, we will name our agent
“robot” throughout the thesis.

Tasks like “clean up the room” will be called either a symbolic task or a high level
task. Both names are interchangeable and should distinguish the task from its coun-
terpart, i.e. low level motion planning actions, which try to find a trajectory of the
robot.

The remainder of this thesis will consists of a related work part, where we ex-
plain symbolic planning in section 2.1. Afterwards, in section 2.2, we discuss motion
planning, by concentrating on optimal motion planning and how task variables are con-
structed. We proceed in Section 3.1, by discussing current ideas and algorithms, which
integrate symbolic and motion planning. This leads to the topic of motion primitives,

which we will discuss in Section 3.2, where we will point out, how the general notion
differs from our approach.

After providing the background and discussed the main ideas on integration, we
focus on our approach in Chapter IV. Here we will explain in detail, how to evaluate
the precision parameters by using different mappings and a motion planner. Each
mapping is then explained in detail, together with the optimization strategy CMA in
Section 4.4. In the end, we show the simulated evaluation of the methods in Chapter
V and discuss applicability and future research in Chapter VI.

Chapter 11

Background in Symbolic and
Motion Planning

To provide a sufficient background for integration, we cover the topics of symbolic plan-
ning and motion planning in the next two sections. The main focus here is to provide
important concepts from both areas, which on the one hand explain how a planning
procedure works, and on the other hand provide an intuitition, how we can integrate
both areas.

We start by introducing symbolic planning. Symbolic planning refers to finding a
sequence of abstract actions, called a plan, which enables the robot to reach a desired
state of the world (Russell and Norvig, 2010). An important aspect for robustness of
symbolic planning is the uncertainty of state transition. We dicuss its origin in Section
2.1.2 and how it is handled in Section 2.1.3.

After introducing symbolic planning, we explain how a symbolic action can be exe-
cuted by using a motion planning algorithm. Motion planning is concerned with finding
a trajectory for a set of continuous variables. In robotics, we are usually interested in
finding a trajectory in configuration space (C-space), which is the space of all joint
torques. For example, given a 7 degrees-of-freedom robot, the C-space will become a
seven dimensional space. The final trajectory is subsequently called a plan, but we will
call it trajectory to distinguish it from the symbolic plan.

2.1 Symbolic Planning with Relational Represen-
tations

Giving a comprehensive overview about symbolic planning is beyond the scope of this
thesis. Please refer to the basic text from Russell and Norvig (2010), but also to discrete
planning from LaValle (2006). Our main focus here is to introduce symbolic planning
by discussing a recent symbolic algorithm by Lang and Toussaint (2010a), and dis-
cussing probabilistic rules by Pasula et al. (2007) based on relational representations.

5

This symbolic framework is particularly suited for our motion primitive optimization
task (see Chapter IV), because it possess two important properties.

First, it can handle uncertain state transitions, which is important, if we want to
execute a symbolic action in a real environment. We will discuss the causes of uncer-
tainty in Section 2.1.2.

Second, its state representations are relational, which is an efficient way to represent
a state. We will proceed by discussing relational representations in Section 2.1.1.

2.1.1 Relational Representations

A recent planner by Lang (2011) has demonstrated, that symbolic planning can bene-
fit from a relational state representation. Relational representations are based on the
notion of objects, its properties and its relation to each other. Lang and Toussaint
(2009, 2010b) showed that they are able to outperform enumerated or factored states
in a variety of settings. Enumerated states are represented by a single entry for each
action and each state, while factored states are represented by a list of state properties
(Lang, 2011).

The main reason for the advantage of relational states is the abstractness of the
representation, which constitutes another abstraction layer above symbolic represen-
tations. The symbolic representation is first created by obtaining symbols from the
sensory input. For example, we could create a symbol for a coffee mug and a table, by
observing the sensory input and fitting models to it. From the set of symbols, we can
create the relational representation, by analyzing the relations between symbols. If we
observe, that the coffee mug touches the table with its bottom side, we can conclude,
that there is a relation on(cof fee_mug, table), which expresses, that the coffee mug
stands on the table.

This abstractness of relations comes with the disadvantage, that it is possible that
important informations are neglected, which can lead to undesired outcomes. For ex-
ample, if a coffee mug is located on the edge of a table, it would be risky to grasp it,
because the environment is uncertain, and the mug can easily fall of the table.

So far, we discussed the abstractness of relational representations, which improves

planning efficiency. But an important question remains: How are relational repre-
sentations grounded in the real world?
To ground a relation in the real world, we need to compute a mapping from input
to the relational state. How this is done is still an actively researched question. In
their experiments however, Lang (2011) used models of already known objects types
to recognize them in the sensory input. Relations are afterwards computed by using so
called literals, which are either true or false, depending on the state. A literal on(X,Y)
is for example computed by

true ,if AX~BXand AY ~BY and AZ~B.Z+ B.H

. (2.1)
false ,otherwise

on(A, B) = {
where A and B are two recognized objects from the input stream, on(A, B) means,
that object A stands on object B, and A.X depicts the X coordinate of the object A
in a coordinate system, where the z-axis corresponds to the height in the real environ-
ment. B.H depicts the height of the object B, which has to be known to determine
if object A really stands on top of object B. Given a set of those literals, one can
determine a relational state.

This shows, how the symbolic state is acquired. While the symbolic conversion does
not influence our devised methods, we will come back to it in section 3.1.3, where we
will discuss how a symbolic system can be built up from the configuration space.

2.1.2 Uncertainty in Symbolic Representations

Classical algorithms like STRIPS (Fikes and Nilsson, 1971) assume, that the transition
between two states is deterministic. But in a real environment, there are several cir-
cumstances, where we face non-deterministic transitions. We therefore discuss in this
section the possible causes of uncertainty. A more detailed overview about uncertainty
in robotics can be found in Thrun et al. (2005).

If a symbolic planner starts in a state sy and applies action ag, we can reach states,
which are undesired. The major cause is that the position of objects can only be ap-
proximated. This is caused by several effects. First, we face uncertainty of our sensors,
caused for example by a coarse camera resolution or changing brightness. Second, we
have unpredictable external influences, like changing air pressure or air draft, which
can change the position of the objects or influence the sensors.

Besides the noisy position of objects, we also have uncertainty in the actuation of
robots. Due to mechanical limitations, we usually only reach an approximate position
of the endeffector. This is further enhanced by noisy sensors, which measure the torque
of the robot joints. Together with approximate motion planning solutions, this can lead
to an undesired symbolic state transition.

It is therefore necessary to model this uncertainty in the transition between two
states. We will discuss this in the following section, by introducing probabilistic state
transitions.

2.1.3 Probabilistic State Transitions

We have seen in Section 2.1.2, that the environment is usually uncertain and that we
have to capture this uncertainty in our state transitions. We therefore introduce a con-
cept called noisy indeterministic deictic (NID) rules, which was developed by Pasula

7

GraspCube(X,Y) GraspCube(X): on(X,Y), cube(X)
Precondition: on(X,Y), cube(X) 0.7 inhand(X),-on(X,Y)
Effects: inhand(X), = on(X,Y) =102 onFloor(X),—on(X,Y)
0.1 nouse
Figure 2.1: STRIPS Rule Figure 2.2: NID Rule

et al. (2004). Noisy refers to the incorporation of noise into the symbolic rule, inde-
terministic describes that one rule can lead to different results in the same situation
and deictic means, that the rule is defined in relation to other objects, which leads to
a compact argument list.

A NID rule represents an action of the robot, together with the probabilities for its
outcomes. We can define them formally as

pr,l : Qr,l(-)()

pr,mr : Qr,mr (X)

a(X): ¢ (X) — (2.2)

Pro : QT,O

whereby X represents the set of logical variables, r is the NID rule, ¢, are the pre-
conditions which have to be fulfilled, a, is the action applied on X', m,. + 1 the number
of outcomes, p,; the probability of each outcome and Q,;(X) a list of literals which
describe which literals will change (Lang, 2011).

A symbolic action to grasp a coffee mug could for example lead to the changed lit-
eral inhand(cof fee_mug) in the next state, but could also lead to undesired outcomes
like onFloor(cof fee_mug) or broken(cof fee_mug), depending on the outcome of the
action. Practically, these rules are an extended form of the STRIPS representation
(Fikes and Nilsson, 1971) with added probabilistic outcomes. The main difference for
a simple cube grasping action is depicted in Figure 2.1 and 2.2, respectively. NID rules
are particular useful because they enable a compact representation and can be learned
efficiently (Pasula et al., 2007).

NID rules are not the only relational representations using uncertain outcomes. An-
other popular represenation is the extension of the Planning Domain Definition Lan-
guage (PDDL), called Probabilistic-PDDL (Younes and Littman, 2004). It attempts
to define a common standard for planning domains, incorporating uncertain outcomes.
We will not attempt to give a complete overview about probabilistic representations.
For this thesis, it will be sufficient to assume that the symbolic planner can in fact
handle uncertain outcomes.

2.1.4 Symbolic Planning with PRADA

If we declare our state and action representation, the final question is how we can come
up with a plan from a start state to a desired goal state. This process can be seen as an
optimal path search between two states. We here briefly introduce a planning algorithm
based on random action sampling, called Probabilistic Relational Action-sampling in
DBNs planning Algorithm (PRADA) (Lang and Toussaint, 2010a). Actions and their
outcomes are hereby represented as a dynamic bayesian network (DBN), and random
paths from the start to the goal state are sampled. The algorithm terminates, if one
of the sampled paths has reached a certain goodness criterion.

This criterion is based on the probabilities of action outcomes. Each probability
is obtained by executing a symbolic action through a motion planner, and observing
the state transition. The goal is to find a plan, which is robust against noise, by using
actions which have a high probability to reach a desired next state. We will show in
Chapter IV, how one can increase the probability of a desired next state by optimizing
the underlying parameters of the motion planner, for each symbolic action individually.
This supports the symbolic planner in order to end up with more robust plans.

2.1.5 Open problems of symbolic planning

To motivate the approach in this thesis, we will discuss two of the open problems,
which are still present in symbolic planning. This will be further discussed in Chapter
IV.

(1) Optimal actions can lead to irreversible outcomes

In a real environment, where we have to cope with noise, we can reach an undesired
situation, which we cannot reverse. For example, if we want to grasp a coffee mug,
but the grasp was not strong enough, the coffee mug could fall on the floor. Symbolic
planners can already incorporate noise directly in their transition model, but it still
bears a problem, because the probabilities of specific outcomes cannot be influenced.
We will later show, that a closer integration between symbolic and motion planning
can improve upon this problem.

(2) Where does the symbolic representation come from?

Before anything can be planned, one has to prespecify a symbolic representation,
which includes a mapping from sensor input to the symbolic state. This mapping is
crucial, because we have to specify a symbolic representation, which is neither too
abstract or too close to the physical motion level. Too abstract means that we do not
incorporate important information, while too close to the physical level means that we
suffer the complexity issue of the motion planner. This is still an open issue, and we
will discuss this in section 3.1.3, where we will discuss how symbolic representation can
emerge directly from the configuration space.

2.2 Motion Planning by Inference

To execute a symbolic action, we need to come up with a trajectory for the robot. A
trajectory will be defined as a set of joint configurations q;.r:

gyt RTN (2.3)

whereby N is the number of joints of the robot, and T" the number of individual
configurations, which correspond to different instances of time. The goal is to find a
trajectory, which can reach a goal configuration g4, which corresponds to the desired
symbolic state we want to reach. Given a goal configuration, a mapping V,_,, is used
to translate the configuration to a symbolic state. This section will focus on the motion
planning procedure, and how we can create a trajectory, given a start configuration, a
goal configuration and the constraints.

We proceed by introducing the relation between classical motion planning and
stochastic optimal control, which motivates the introduction of task variables. Task
variables are specific constraints for the trajectory, which we require to be satisfied.
Also, we introduce precision parameters, which define the importance of each task vari-
able. This will become an important aspect of our approach in Chapter IV. We will also
discuss the general idea by introducing a recent planning algorithm, based on inference.

For a broader introduction and further reading on motion planning, we refer to
LaValle (2011a,b). The relation between motion planning and stochastic optimal con-
trol is introduced in Hespanha (2009). We also make use of factor graphs, which are
discussed in detail by Loeliger (2004).

2.2.1 From Motion Planning to Stochastic Optimal Control

Motion planning, in its classical definition!, is concerned with finding a constraint-
free trajectory between two points in a continuous space. In robotics, this space is
called the configuration space (C-space), where one point corresponds to a configura-
tion of joint torques of the robot. The C-space is divided into two subspaces, first
Cops, the obstacle space, which represents all invalid configurations of the robot, and
second Cjp., representing all valid configurations. The goal is to find a trajectory from
start to goal configuration, which lies in Cj. Such a trajectory is called a feasible path.

To find a feasible path, we first have to define C,ps. Cops is usually constructed by
checking all constraints of a configuration. The constraints depend on the task and
can include collisions with other objects, joint limits or forbidden areas in task space.

IThe general problem is also called the Piano-Movers problem, see LaValle (2006)[p. 131] for a
detailed definition of this problem

10

We discussed in Section 2.1.2, that the environment is uncertain. Because this also
applies to motion planning, it is usually not sufficient to find a feasible path, but to
find an optimal path, which is more robust against noise. This is called optimal motion
planning, but more prominently treated as stochastic optimal control (SOC). In SOC
each state transition is treated as uncertain. Given a robot configuration ¢; at time ¢,
and a control signal u;, which describes an additional torque which we apply to the
robot, the state equation of the SOC problem is then described by

Q1 = flq, we) + & (2.4)

where ¢, is the configuration of the system at time ¢, u; the control signal at time
t, and £ the noise, which is assumed to be present in the transition (Hespanha, 2009).

Equation (2.4) is the state transition model, i.e. our physical constraint. Our
objective is to minimize a cost of all involved constraints. In SOC, this is called the
cost function. A classical example of the cost function is the quadratic regulator, which
defines a quadratic cost of the state and the control. It can be defined as

T

— T T
JLQR—/ q Qq + u” Ru dt (25)

0 output energy control signal energy
(compare to Hespanha (2009)[p.192ft]), whereby Jyor is called the cost-to-go, u is
the control vector, ¢ the configuration vector and we omitted that v = u; and ¢ = ¢;.
R and () are weight matrices, which determine the costs of each individual dimension.

While the quadratic regulator can be analytically solved by using the ricatti equa-
tions (see Hespanha (2009) and Toussaint (2009)), this is not true for the general case.
Furthermore, the quadratic regulator does not explicitly include important task objec-
tives, like “do not fall over”, but only cares about minimizing the quadratic values.
But what one is really interested in, is an optimal trajectory for a specific task. It is
therefore necessary to include different task constraints directly into the cost-function.

2.2.2 Casting SOC as an Inference Problem

Instead of using the energy of the system, Toussaint (2009) use different task variables
like “reaching goal”, “do not fall over” or “avoid obstacles”. This will cause the cost-
function to become non-quadratic, and will therefore be more difficult, i.e. in general
not analytically, to solve. In order to solve arbitrary costs-to-go functions, Toussaint
(2009) introduced a bayesian view on planning, by acquiring a probabilistic model of
trajectories, which are conditioned on all desired task variables.

As described by Rawlik et al. (2010), a belief distribution b:(g;) is calculated for
each time step. It represents the belief about the goodness of a certain posture at a
specific timestep, including all constraint task variables. Given this distribution, the
maximum aposteriori (MAP) configuration is choosen as

11

Figure 2.3: Conditional dependencies for the belief calculation. ¢; represents the pos-
ture of the robot at time ¢, x;, is a task variable at time t. Taken from Toussaint and
Goerick (2010)

quap = arg min by(q;) (2.6)
q

The belief is calculated by inference, the dependencies in each timestep are depicted
in figure 2.3. Instead of calculating the belief directly, Rawlik et al. (2010) generalize
the algorithm by using a concept called factor graphs (Loeliger, 2004). It calculates
the belief by using a message passing algorithm in the following form:

1%
bt(Qt) = Hgi—1—q: g1 —ae H Hoay i—qe (27)
i=1
This is depicted in Figure 2.4, where the current configuration ¢; is conditioned on
the previous configuration ¢;_;, the next one ¢4, and the task variables x;1, -,z v.
The individual messages are defined as

Hqp_1—q = N[Qt‘5;1$t7 5;1] (28)
:ufh-ﬂ—ﬂh = N[qtﬂ/;_lvt? V;t_l] (29)
v
1 0 = Nlaelrs, R (2.10)
=1
(2.11)

whereby Sy, s¢, Vi, v; parameterize the individual state transitions. See Toussaint
and Goerick (2010) for a more detailed overview. The mean r; and the covariance R,

12

Figure 2.4: Factor graph representation to calculate the belief b;(q;). ¢ represents
the configuration of the robot, x is a task variable, for example the position of the
endeffector. From Toussaint and Goerick (2010)

of the task messages are defined as

re=Rig+) IO yr, — 0i(d)) (2.12)
Ry=> JICl; (2.13)

with J; the jacobian of a configuration, ¢ the approximated configuration, z;; the
desired goal of task i at time ¢, ¢;(.) the task mapping for task i and C;; depicts the
covariance of task ¢ at time ¢t. Here we face the tunable parameters of the algorithm:
The task mappings ¢;, the desired goal of the task y, and the inverse of the covariance
matrix C’;tl, which defines with which precision a task has to be fulfilled. We will
explain each one of them in more detail in the following section, because they will
constitute the parameters of our optimization task.

2.2.3 Task Variables and Task Targets

A task is a specific constraint, which the motion planner has to satisfy in order to find
a feasible trajectory. We represent a task by a task mapping ¢; : ¢ — y;(Toussaint,
2009), where ¢ depicts the robot configuration and y; is the task variable. For each
mapping, we can define a task target y;;, which represents our desired goal. An exam-
ple is a desired trajectory of the robot’s endeffector, whereby our task mapping would
become the forward kinematics as described in Craig (1989) and the task target would
become the individual points on the trajectory.

Equation (2.12) sums up all differences between task variables and task targets and
weighs them by the inverse of the covariance matrix. This inverse covariance matrix
is called the precision of the task, because it defines how close we want to reach the
target. We discuss this precision matrix in detail in the following section.

13

2.2.4 Precision of Task Variables

In Toussaint and Goerick (2010) the covariance matrix is defined as
Cri =iyl (2.14)

whereby i is the task, ¢ the time, C’Z}l the precision matrix, I is the unit matrix and
v;+ the scalar precisions for each task i. Through the choice of v;; we can determine
the importance of each task. Note also, that the precision for one specific task can vary
over time. For example, it we define a task variable to reach a specific goal, the posi-
tion of the robot manipulator on its way is not as important as the final goal position.
Therefore, we could reduce the precision on its way and define a large precision at the
end.

As the number of task variables increases, it gets more complicated to define the
precision in the right way. For the task variables of a grasping action, it is important
to reach the goal, but also to avoid obstacles, avoid joint limits, obtain a good grasp
and align the finger onto the object. The precisions for each task have to be specified
manually, by trial and error.

As already discussed in Section 1.1, our main contribution in this thesis will be to
develop an algorithm, which can automatically find the optimal precision parameters,
which lead to a successful execution on the symbolic level. This extension will be
discussed in Chapter IV.

14

Chapter I1I
Related Work

After we discussed the necessary background for the remainder of this thesis, the fol-
lowing two sections will discuss the related work in the area of combination of symbolic
and motion planning, and the area of motion primitives. To begin, we will first dis-
cuss, why it is necessary to attempt a combination of both planning levels. We then
proceed to discuss different approaches for combination, first the hierarchical top-down
approach, which starts with a symbolic planner and breaks its tasks down into smaller
subtasks, which eventually can be executed by a motion planner. Second, we discuss,
how one can predict if a symbolic action is feasible on the motion planning level, and
how this can be used to speed up planning in generally. Third, we discuss a bottom-up
approach, where the symbolic world is build up from the underlying configuration space.

After discussing combination, we will proceed by a giving an overview about motion
primitives. Our main focus is first to introduce the two prevalent models of primitives,
and second to discuss how motion primitives can be incorporated into the motion
planning procedure. This incorporation leads directly to the approach used in this
thesis, which we will delimit against related approaches.

3.1 Combination of Symbolic and Motion Planning

To justify this thesis, it is essential to discuss, why we need to combine symbolic and
motion planning. We therefore will point out three arguments for the combination of
both planning levels.

(1) Optimality criterion on symbolic level is different from physical opti-
mality

On the symbolic level, our definition of optimality is different from the one on the
motion planning level. Motion planning accesses directly the physical constraints of
the world, like the position of the objects, collisions of the links of the robot, joint
limits or the position of the fingers. Contrary, symbolic planning operates on the
symbolic states only, and defines optimality by the state transition probabilities, or by

15

the shortest path between the start state and the goal state. An optimal path on the
symbolic level is therefore not necessarily optimal on the motion level.

(2) Unable to handle irreversible actions

The different meanings of optimality can also inadvertently lead to high risk motion
plans and therefore to an irreversible outcome. For example, if a coffee mug stands
at the edge of the other end of a table, if could be risky to try grasping it directly.
But if one goes around the table, the action can become more robust. This cannot be
modelled directly by relying on the symbolic planner alone.

(3) Symbolic planner analyzes only the start and end configuration

After the execution of a trajectory, the symbolic planner obtains the next symbolic
state by using a mapping from the goal configuration to a symbolic state. If this con-
figuration belongs to the desired symbolic state, the transition is successful. Thereby,
any events during the execution of the trajectory are ignored. If the robot collides with
an object during the execution, or joint limits are reached, the robot or the objects can
be damaged, even if the final symbolic state is reached.

All three arguments have a common cause: The abstraction of the symbolic plan-
ner. While the abstraction is necessary to obtain plans in a reasonable amount of time,
a too high abstraction can lead to the aforementioned problems. It is therefore nec-
essary to discuss, how we can approach the abstraction by an integration of symbolic
planning and motion planning. We therefore proceed by introducing three different
ideas of integration. The first section is concerned with algorithms using a top-down
approach, which starts on the symbolic domain and uses a motion planner to solve for
a corresponding motion plan. One could improve upon symbolic plans, if the feasibility
of a motion plan can be guessed. Section 3.1.2 will therefore discuss ideas to predict
if a motion plan is feasible. Eventually, in Section 3.1.3, we will discuss a bottom-up
approach. The ideas in this section start in C-space and try to find relations to a
symbolic description. This can lead to complete and feasible trajectories, but comes
at the cost of a high complexity.

3.1.1 Hierarchical Top-Down Approach

The underlying idea of a top-down approach is to start planning in a symbolic repre-
sentation by using a high level task. This high level task is then divided into smaller
subtasks, until we end up with a symbolic action, which can be executed by a motion
planning algorithm. Tasks like “clean up the room” can be divided into a sequence
of smaller tasks like “clean floor” and “wash coffee mug”. “wash coffee mug” can in
turn be divided into smaller tasks like “grasp coffee mug” and “place coffee mug in
dishwasher”. If we cannot divide the task into smaller subtasks, we invoke a motion
planner to execute a motion plan. Kaelbling and Lozano-Pérez (2011) use this principle
to find a feasible trajectory, given a high level task. Instead of planning the complete

16

trajectory for all subtasks, they execute each subtask directly and use the goal state
for the next subtask. If a subtask leads to a wrong state, they try to reverse the action.
The main assumption is, that each low level task is feasible and can be executed by a
motion planner.

A similar hierarchical approach is proposed by Wolfe et al. (2010). It differs from
Kaelbling and Lozano-Pérez (2011) in two points. First, it keeps a record of motion
plans for a specific symbolic action, which is similar to the dynamic programming idea.
Second, it assumes that a subtask is able to declare, if its trajectory will be feasible.
Dornhege et al. (2010) point out, that all approaches still have a fundamental problem:
There is no guarantee, that a motion plan for a subtask is feasible.

3.1.2 Heuristics to predict Feasibility of Symbolic Actions

Let us assume, that the symbolic planner devised an optimal sequence of symbolic
actions. One of them is called “grab coffee mug on the table”. Given this symbolic
action, we can ask:

(1) Can we predict, if the motion plan will be feasible?

Given only the high level plan, we cannot know the answer. But it is possible to de-
vise heuristics which can indicate if an action is more likely feasible than another. The
most prominent approach is to run the motion planning algorithm for a short length of
time to collect information about its proceedings. Sucan and Kavraki (2011a) use this
to devise a heuristic, involving the dimensionality of an action, the distance to the goal
state and the time spent on the plan. This idea was further developed in Sucan and
Kavraki (2011b), where many motion planners share information about its progress,
to guide the allocation of computational resources.

A similar idea is used by Plaku and Hager (2010). They circumvent unfeasible
actions by monitoring the progress of the motion planner. If an action does not make
any progress, they stop it at a cut-off time. Thereby, motion plans, which make fast
progress towards the goal are preferred.

Bretl et al. (2004) provide a prediction, based on a mathematical prove. If no fea-
sible motion can be found in a short time, they try to prove disconnection between
the involved discrete spaces, thereby using insights from computational real algebraic
geometry.

Nevertheless, there is no general solution to predict if a motion plan is feasible.
As Hauser and Latombe (2009) discussed, only sampling-based methods are really
applicable in practical settings. To stop those methods, a cut-off time is usually intro-
duced, which does not guarantee a complete algorithm, i.e. that it can decide if the
plan is feasible or unfeasible. Because the motion planning problem is P-SPACE hard

17

(LaValle, 2006), complete algorithms perform in practical settings far worse than real-
time. Therefore, it could be advisable to restrict to approximate complete algorithms,
which discretize the space or give probabilistic bounds like Hauser and Latombe (2009).

(2) Can we guarantee optimality of the motion plan?

Motion planner and symbolic planner have different ideas of optimality. In a sym-
bolic planner, we usually want to find the shortest path in terms of actions or a manually
specified heuristic. A motion planner, however, will try to find an optimal way in terms
of dynamical, limit or time constraints. This is strongly related to optimal control the-
ory (Hespanha, 2009), where we want to minimize a certain cost function, constrained
by our dynamical system. To determine the optimal action involves acquiring infor-
mation about the whole trajectory from start state to goal state. But using motion
planning alone for a whole trajectory is clearly too complex. It seems, that both meth-
ods together are necessary to find an approximate optimal action. Nevertheless, it is
essential to have a symbolic system, which is near to the configuration space, and still
abstract enough too allow for near real-time solutions. The next section will discuss,
how such a system can emerge directly from the configuration space.

3.1.3 Bottom-Up: Symbolic State from C-Space

Both aforementioned approaches rely on a predefined symbolic planner. But we can
also go the other way round, if we devise a mapping from C-space to the discrete, sym-
bolic space (lets call it D-space). Because this D-space is then built from the C-space
up, we can be sure that each action is feasible. If it was not feasible, we could not
reach it from our current start state.

This is visualized in figure 3.1, where the space is divided into configurations be-
longing to a symbolic state sy and to s;, respectively. By sampling the space, we can
directly obtain all the symbolic states, which are reachable from the current configura-
tion. If we know about all reachable symbolic states, we can forward this information
to the symbolic planner, which can now ignore all non-reachable symbolic states during
its planning procedure. It seems that this is a more natural approach, because we only
need to define a mapping f : C' — D, which maps a configuration to a corresponding

symbolic or discrete space. The symbolic action, which emerges, is then guaranteed to
be feasible.

Following this idea, Choi and Amir (2009) build a planner, which first samples the
C-space to obtain applicable symbolic actions. Each action is afterwards used in a
symbolic planner to obtain an optimal symbolic plan. The underlying motion planner
will then be used to find a feasible trajectory, which is now guaranteed to be feasible,
because we sampled the set of applicable symbolic actions. The disadvantage of this
approach is the additional calculation to acquire the nearby symbolic states and to
compute the applicable actions.

18

180°

s1 : —penetratesWall

02

So : penetratesWall
o\~

180°

\\ 02

Figure 3.1: The configuration (C-)space (top) and three different corresponding robot
configurations. By observing the symbolic state of each configuration, one could sample
the C-space and devise a map of symbolic states. This is depicted in the C-space, where
one set of configurations belongs to the symbolic state sy, while the other belongs to
S1.

Cambon et al. (2009) extend all symbolic actions by incorporating its associated
configuration spaces. This C-space is sampled during each motion planning call. Be-
cause each action has an associated C-space, it is now possible to check if two states
have a common C-subspace, which can be used as a state transition. Nevertheless,
they thereby assume that the configuration space of an action does not change over
time.

The type of symbolic representation is of course a crucial decision: Fainekos et al.
(2009) use an advanced temporal logic, which combines logic operators and C-subspaces.
A reach operation could be described as —(c¢;, -+, ¢,) UNTIL ¢,.;, which means:
avoid all subspaces ¢y, - - - , ¢, until subspace ¢, is reached. Using this logic is a com-
promise between the more abstract relational representations and pure motion planning
and could be useful for an intermediate representation. On the downside, this approach
works currently only in a 2D environment, and the complexity to find the C-subspaces
is too high to be useful for real-time planning.

Belta et al. (2007) sample the C-space to obtain a set of motion primitives. To

acquire a plan, they use a finite state machine, called a maneuver automaton, which
finds a sequence of primitives to accomplish a symbolic task. Nevertheless, there is no

19

guarantee that they can find a feasible plan by a sequence of primitives.

The introduced ideas in this section all sample the C-space, in order to build up a
symbolic space, or to find motion primitives. The remaining question is how we can
come up with a valid feasible plan, given a set of motion primitives. The next sec-
tion will therefore explain motion primitives in detail, and subsequently discuss, how
we can incorporate them into a motion planning algorithm to yield a feasible trajectory.

20

3.2 Motion Primitives

The primary idea behind a motor primitive is the wish for abstractness. We want to
obtain a set of motions, like “throwing a ball”, “open a door”, “sit on a chair”, which
can be used in a higher level plan. Therefore, we need a formalism, which captures the
essential properties of a motion. Such a formalism should be “compact, robust against
noise, easy to reuse and it should allow us to recognize the motion” (Ijspeert et al.,

2002b).

Research in motion primitives mainly focuses on two different paradigms for de-
scribing a motion, which we will briefly discuss. The first are attractor based models,
which describe a controller function, which attracts the robot towards its goal. The
controller is especially designed to capture the desired motion. Second, a motion can
be represented by a set of intermediate milestones. Those milestones are called via
points.

Motion primitives are generally learned from a set of observed trajectories, either
acquired from previously executed motions, or from humans by using imitation learn-
ing. It is also possible to learn from previously planned trajectories.

3.2.1 Attractor Based Models

Attractor based models follow the principle of designing a controller for a specific mo-
tion, which can be used to attract the manipulator towards a desired goal configuration.
Attraction was first defined by Ijspeert et al. (2002b), which used nonlinear oscillators
as controlling functions. Each controller is shaped by adding a gaussian kernel to the
output, and learning its weights from previous trajectories (Ijspeert et al., 2002a). This
model can incorporate also perceptual variables (Ijspeert et al., 2002b) and can be used
to define rhythmic goal movements, like a waving hand.

Building on oscillators, Kober et al. (2010) simplified the original controller and
showed its applicability towards moving targets, like batting and hitting. Learning of
the controller can be done by reinforcement learning techniques (Kober and Peters,
2009). This approach leads to two interesting ideas, which we want to discuss here:

(1) Supervisor chooses set of primitives

Peters et al. (2009) describe a complete framework for learning and executing a
task. They propose a supervisor module, which basically chooses a set of primitives for
a specific action. Our framework, discussed in section IV will use a symbolic planning
system instead of a supervisor module to choose the primitives. It is interesting to note,
that both constitute a different layer of abstractness. While symbolic states plan in a
more abstract level, the supervisor module plans in a lower abstractness level, where it
tries to combine different primitives by manipulating their duration, their amplitude
or their goal. As we will discuss in section VI, the right level of abstractness is crucial
to trade-off complexity and efficient algorithms.

21

(2) Optimizing on different abstraction levels

Kober and Peters (2011) introduced an optimizing process on different abstraction
levels. While optimizing a high level task, their algorithm tries at the same time to
optimize lower level motor task, which do not directly influence the high level task.
We think it constitutes another example, that robots can benefit greatly from a closer
integration of high level tasks and their lower motor tasks.

3.2.2 Via Point Models

Instead of designing a controller, one could represent a motion by a set of points. This
approach is also called via points, because the robot has to pass each point on its way
towards the goal. To generate a trajectory, spline-based interpolation could be used
to connect the points. Toussaint et al. (2007) use this approach, but instead of using
spline methods, they design a controller for each via point, which constitutes an inter-
mediate model between attractor based approaches and via points.

Hauser et al. (2006) use via points to better incorporate them into a motion plan-
ning algorithm. Contrary to attractor based model, via points can directly be checked
for feasibility and therefore provide an easier integration into the planning process.

Via points and attractor based models should show, how one can define a motion
explicitly. Contrary, our approach will define a motion primitive implicitly, by defining
constraints of the symbolic action. Still, we need to come up with a feasible trajectory,
independent of the model. The following section will discuss how this can be accom-

plished.

3.2.3 From Motion Primitives to Motion Planning

A major question is how motion primitives can be used to accelerate or replace motion
planning. A mayor problem is that motion primitives are generally seen as special kind
of controller, like a PID one. Like any other controller, they suffer from local optima,
which can appear for example, if objects are blocking the motion path. Besides local
optima, we also have to think about, which motion primitive we should use at which
time. Our intention is to devise an algorithm, which can decide to use the right motion
primitive, while also avoiding local optima. We will therefore review existing literature
for their contribution to the following questions:

(A) How can we avoid local optima?
(B) Which motor primitive should be used at which time?

Koenig (2010) approaches (A), by starting a planner, once a local optimum is
reached. They call this a Planning-on-demand system, where the robot uses a poten-
tial function to reach the goal, but starts a motion planning algorithm, if it is stuck in

22

a local optima. The same could in principle be done with a motion primitive controller.

Park et al. (2008) embed the perturbances generated by objects directly into the
controller by using dynamical potential fields. Local optima are assumed to appear
seldom and only when many objects appear to block the path. Because they concen-
trated on learning primitives from imitations, they conducted experiments with one
primitive and did not approach our question (B).

Cohen et al. (2010) first acquire a set of basic motion primitives. To solve (B), they
conduct a search for a series of primitives, which lead towards the goal. This was ex-
tended by incorporating lower-dimensional primitives and by acquiring new primitives
during the planning process by Cohen et al. (2011). Note that this seems to be a more
local version of the symbolic vs. motion planning integration. Instead of planning a
series of symbolic actions, which are assumed to be feasible on the motor level, they
plan a series of motion primitives, which are also assumed to be feasible. But we al-
ready discussed this problem in Section 3.1. Nevertheless, this approach constitutes an
abstraction of the original problem, and could be advantageous, if it is closer integrated
into the motion planner.

A quite similar idea to solve (B) was used by Meier et al. (2011). They build a
motion primitive library from newly observed motions and try to fit them to other
motions. They do not directly plan with this library, but use motions to fit newly
observed motions to acquire a classification skill.

Both Cohen et al. (2010) and Meier et al. (2011) use an unchanged version of their
primitives, which constrains the reachable spaces. In contrast, Hauser et al. (2006)
transform previously generated primitives, so that they fit the start and goal state.
Afterwards, equally spaced points on the path are checked on feasibility. Non feasi-
ble points are expanded by a sampling based motion planner until a nearby feasible
point is found. The final path will have close resemblance to the original motion, while
avoiding non feasible regions. This integration solves (A), but still gives no answer to

(B).

In general, we think, that the incorporation of motion primitives into the motion
planning algorithm is more promising, because replanning from local optima could be
contra productive to the intended motion. For example, imagine that we learned a
motion to hit a ball with a racket. Now we want to hit the ball, but a table is in our
way. If we just execute our controller, we could end up under the table, before we
realize that we need to replan. The ball would already be gone. If we invest time to
plan at the start, we could improve the controller in a way, that we would hit the ball
above the table. Of course, the time to plan is crucial, but in a changing environment,
it seems to be necessary to consider this option.

Our own approach follows therefore the incorporation of motion primitives into the
planning algorithm, but is contrary to Hauser et al. (2006), because we consider a

23

symbolic planner as part of the framework to approach (B), and because we do not
directly include a motion trajectory into the motion planner. Instead, we shape the
parameters of the motion planner directly, depending on the symbolic action. We think
that this constitutes a more integrated approach, because we change the search space
according to the motion primitive, in contrast to fitting a motion trajectory directly
into the C-space. This concept will be part of the discussion about our approach in
the following section.

24

Chapter 1V

Integrating Symbolic and Motion
Planning

We have seen in Section 2.1 how a symbolic planner can calculate a sequence of actions,
in order to solve a high level task. To execute one of the symbolic actions, we intro-
duced motion planning in Section 2.2, and discussed its relation to stochastic optimal
control, together with the constraints which constitute the cost-to-go function. After
executing a symbolic action, we will end up in another symbolic state. Because of un-
certainty, this state transition will be stochastic, as depicted in Figure 4.1. The figure
shows that if we apply an action ag in the start state sg, we will reach the next state s;
with a probability of py_,;. Usually, we have a preference, which next state should be
reached. For example, if we execute a symbolic action grasp X, our desired effects on
the next state would be inhand(X). This desired state transition has a probability to
succeed. Our goal is to increase this probability, in order to achieve more robust and
feasible actions. The general principle is demonstrated in Figure 4.2. On the left, a
NID rule for the symbolic action GraspCube(X) is shown, together with three different
outcomes. The desired goal is to reach a next state, where the effect inhand(X) holds
true. Our approach will optimize the underlying motion planner for each symbolic
action, so that this transition probability increases. After our optimization process, we
want to obtain a changed state transition model, as shown on the right of Figure 4.2,
where the desired probability significantly increases.

Before formalizing our approach, we will briefly discuss the optimization procedure
from a conceptual level. We discussed in Section 2.2, that a motion planning task
has to be constructed by a set of constraints, which were called task variables. We
also specified the importance of each variable by so called precision parameters, which
define how close the task variable has to be satisfied. In our approach, we will use a
static set of task variables, which are predefined and remain unchanged, together with
a dynamic set of precision parameters, which we want to optimize. By optimizing the
precision parameters, we can identify which task variables are important for a specific
symbolic action, in order to increase the desired state transition probability.

This probability can be computed, by executing a symbolic action repeatedly from

25

Figure 4.1: Stochastic state transition model: If we apply an action aq in state sy, we
will reach the next states sg, - - - , sg with a certain probability pg_1,- - , po_x, because
of uncertainty in the state transition.

GraspCube(X): .
on(X,Y), cube(X) GraspCube(X):
on(X,Y), cube(X)
0.6 inhand(X) Optimization ‘
- 0.95 inhand(X
— 0.2 onFloor(X) m.(m (X)
0.2 noise 0.05 notse

Figure 4.2: Left: A symbolic NID-rule to grasp a cube, which has preconditions
on(X,Y) and cube(X). Without optimization, the success rate for the desired next
state is 0.6, which means that in 60 percent of the action execution, we will get into
state inhand(X). After applying our optimization process, our goal is to raise the
success rate to a higher value (This is an example with imaginary values, which should
demonstrate the principle behind our optimization).

a start state and invoking a mapping from configuration to symbolic space, which
translates the goal configuration of the robot to a symbolic state. If we reach a symbolic
state, which is equal to our desired state, we increase a counter. The probability is then
obtained by repeating the execution in different scenarios, and divide the counter by
the total number of executions. We will call this probability success rate, to emphasize
our objective to increase its value.

4.1 Formalization of a Motion Primitive P

We visualized in Figure 4.3, how several tasks for a symbolic action grasping are used
as the input to a motion planner. Each task is defined by a mapping ¢; from joint
configuration ¢ € RY to a task variable y; € RPi:

¢; : RY — RV (4.1)

whereby N is the number of joints of the robot, and D; the space of the task vari-
able. For example, the mapping ¢; can be the forward kinematics (Craig, 1989), if we

26

¢37 y§,t

alignment
of finger

¢27 y;,t

avoid
limits

*
¢17 yl,t
avoid
collisions

Do Pt D2t b3

Motion Planner

¢47 yit ¢57 yg,t ¢67 yat
opposition Zero distance
of fingers velocity finger to

at goal object
Figure 4.3: Symbolic grasping action: A set of tasks define the constraints of the
motion planner. Each task is represented by a task mapping ¢ and a task target y*,
together with the precision parameters p. See text for clarifications.

want to control the endeffector position. The space of the task variable would become
D; = 3 (position) or D; = 6 (position and rotation) for the endeffector. Moreover,
each task is accompanied by a task target y;,, which describes the goal of the task
at each instance of time ¢. In the case of the task reach target, the task target is the
goal position of the endeffector. Eventually, every variable is weighted by a parameter
pi+, which defines its precision at each instant of time ¢. For the reach target task, we
would define a low precision during the trajectory, but a large one at the end of it.

Given theses tasks, our goal is obtain a formalization which allows us to optimize the

precision parameters for one symbolic action. We start by joining all task mappings,
including the task targets, into a new variable ®:

¢ = {¢17 yifﬂ to 7¢V7 y‘*/,t} (42)

whereby V' is the number of tasks. The precision parameters are joined together
by a new variable a:

27

a: R (4.3)
a={pi1, - ,pp1} (4.4)

whereby P is the number of task variables and T" the number of time steps.

The variables ® and « define the constraints and the importance of a symbolic
action. We will define the concatenation of ® and « as a motion primitive P

P = {a, ®} (4.5)

The motion primitive P, together with the start configuration and the scenario of
the environment, defines the input parameters for the underlying motion planner. Here
we want to point out, how the optimization of motion primitives differs fundamentally
from classical approaches. We depicted a sequence of symbolic actions in Figure 4.4.
Each symbolic action will be executed by a set of constraints on the motion planning
level, which we called a motion primitives P. A classical separation of planning algo-
rithms would assume, that a motion planner can find a feasible path, independent of
the symbolic action. Each action belongs therefore to the same P. Using a motion
planner, as discussed in Section 2.2, we would define a different P for each symbolic
action. But these P are specified manually by an expert, and are not optimal. The
main focus therefore will be to find a set of P*, which are approximate optimal.

4.2 Objective Function from P

To find an approximate optimal P*, we assume that & is static, while o is dynamic
and can be used to optimize P. We therefore will use only « to further define our
optimization. Our first goal is to define an objective function, which maps the a vector
to a scalar value. We represent this by a mapping

U,y RO (4.6)

This mapping constitutes the evaluation of one set of o parameters into one scalar
value 7. v will represent how successful the symbolic action could be executed. Its
value is proportional to the inverse of the success rate, but also includes other physical
variables, to guide the optimization process. We will proceed by explaining the map-
ping first on a conceptual level, and in the following sections in detail.

The main idea is summarized in Figure 4.5. Given a vector « of precision pa-
rameters, we evaluate them on K = eg,--- ,ex different scenarios, and obtain a set
of K different trajectories g.,, by using a mapping V¥,_,,. This mapping constitutes
the motion planner, whereby the start configuration, the goal configuration, the task

28

Symbolic Planner
Grasp(X) Place(X,Y) Homing() — - - -
Classical ‘ : ‘
Parametrization P P P
Manual ‘

Parametrization Pyrasping Phiacing Proming
Optimized N ‘ - - ‘

Parametrization grasping placing e

Figure 4.4: Symbolic Planner

target, the task mapping and the scenario remain unchanged. Each trajectory is af-
terwards characterized by a set of variables S, by invoking a mapping ¥, 3. [,
includes the success rate, but also other important physical variables like maximum
collision between robot and objects in the scene. Given a set of K times 3., variables,
obtained from K scenarios, we invoke a mapping Wk _, 5, which maps all 3., variables
onto a single 5. This single 3 variable is then evaluated by a mapping ¥s_,,, which
returns a scalar value v. We will explain each mapping in detail in the following section.

4.3 Mappings to evaluate «o(P)

After giving a conceptual overview about the evaluation of a vector a onto one scalar
value 7, we will proceed by investigating each mapping individually. We start by
defining the first mapping from « to a trajectory q as

U,y R — RV (4.7)

whereby N is the number of joints of the robot and 7' the time steps of the planned
trajectory ¢q. This mapping represents the motion planner, where the scenario of the

29

Figure 4.5: Mapping from parameters « to the scalar value v, by using a set of K
scenarios. eg,eq,--- ,ex refer to the scenario, which will be evaluated.

environment, the task target, the task mapping, and the start configuration are previ-
ously defined and remain constant.

After obtaining a trajectory from the motion planner mapping, we are interested if
we have reached our desired symbolic state. While a separation of symbolic and motion
planning would consider the trajectory of the state transition as a motion planning
problem and use only the final configuration to compute the next state, we also want
to investigate the performance of the trajectory, in order to obtain the next symbolic
state. Our main motivation is, that movements along the trajectory could damage
the robot or change the environment, even if we reach the desired goal configuration.
Therefore, it is essential to obtain a set of variables, which let us describe the trajectory
and allows us to compute the next state. We call them § and include the following
variables, which can be obtained from a planned trajectory:

d - Final distance to the target goal
c - Maximum collision distance from all links of the robot to objects
m - Maximum distance of each joint of the robot to its limit

1 - Length of the final trajectory

30

i - Time to plan the trajectory
g - Grasp evaluation (only symbolic grasping action)
s - Success of symbolic state transition

whereby the success of a symbolic state is directly dependent on the distance to the
goal and the grasp evaluation, but also on the collision and limits along the trajectory.
The computation of the variables from the trajectory will be done by a mapping:

L (4.8)

whereby N the number of robot joints, T the time steps of the trajectory and B
the number of variables of 3, which can vary, depending on the symbolic action. How
we compute the mapping ¥,_,5 for a specific symbolic action will be shown in Section
4.3.1.

Our primary objective, the success of a symbolic state transition, will be a binary
variable, which is either true if we reach our desired symbolic state, without violating
constraints, or false otherwise. But usually there are several trajectories, which will
lead to a success. Because we want to compare trajectories with each other, we will
introduce another mapping from 3 to a scalar v, which depicts the costs of a trajectory

Vs, R =R (4.9)

whereby B is the number of variables in 8 and ~ a scalar value. The calculation of
~ also depends on the symbolic action and will be explained in detail in Section 4.3.2.
Moreover, the values of [are obtained from one trajectory only and in one scenario.
But to generalize to unknown scenarios, it is essential to evaluate the parameters on
different scenarios. We therefore use a mapping from a multitude of 5% vectors to a
single 3 vector.

Upn 5 RPHF - RP (4.10)

whereby K is the number of scenarios we use, and B the number of variables of 5.
We used in this mapping the average over all individual ; vectors:

K
1

Warsp = 2 ; B (4.11)

The mappings from Equation 4.10, Equation 4.7, Equation 4.8 and Equation 4.9

make up the evaluation of the parameter vector a to the scalar value v. To summarize,
we end up with the final mapping as

W (@) = Voo (Va5 ({Wgmsp(Wansg()) 1)) (4.12)
We proceed by explaining the two mappings ¥,z and Vg_,, in detail.

31

Figure 4.6: graspcenter is a imaginary point in the middle of the robot hand. object-
Center is defined as the center of the object which we want to grasp.

4.31 VU,

The mapping from trajectory g to a set of 8 variables is used to describe the trajectory
in terms of its physical appearance. We already discussed in the previous section, which
variables constitute 5. Here we will explain each variable in detail, starting with the
distance variable.

e Distance to object

The distance d is defined as the 12-norm of the distance between the grasp center
and the object we want to grasp. Figure 4.6 shows where the two points are located
in space. We end up with

d = ||graspCenter — objectCenter||s (4.13)
We also define this variable as being successful, if a threshold 6, is reached.
e Collisions

To acquire a measurement of collisions, we introduce a variable c;;, which is a
function of the distance between a pair ¢ of a link on the robot and an object in the

32

scene. If the link touches or penetrates the objects, we require that ¢;; >= 1, which
leads to

iy = (4.14)

)

{[0, 1[,if no collision

1,00[,if in collision

Given a trajectory with T points, we compute a maximum collision ¢; by using the
maximum ¢;; of all points:

¢, = Max ¢ 1.p el M (4.15)

whereby M depicts the number of pairs of links and objects. Given the maximum
collision ¢; for each pair, we define an overall collision variable ¢ as

¢c=maxcy,- - ,CN (4.16)

Given ¢, we define a threshold 6., which depicts, that an action is successful, if we
encounter no collided pair along the trajectory, together with a small margin to avoid
very close encounters, which can lead to collisions, if we regard the uncertainty of the
environment.

e Limits

The limits variable m,, is defined for each link 7 of the robot at each instance of time
t along the trajectory. It depicts if the link 7 has reached a joint limit, which is defined
by internal hardware specifications. We define it as zero, if no limit specification was
violated and greater as zero, otherwise. Similiar to the collision, we use the maximum
value over all links and all time instances. This leads to the following formalization

o {O ,if no joint limits reached (4.17)
’ 10,00[,if joint limit reached

m; = max m; 1.7 iel,---, N (4.18)
m = maxm; (4.19)

whereby T is the number of time instances along the trajectory, N the number of
links of the robot and 7 is a specific link. We define a successful action, if the limit
variable is below a threshold of 6,,.

e Grasp Evaluation

To evaluate the goodness of the grasp, we copied the hand and the object from the
simulator to a free space, where we stopped the number of time steps, after the object
falls from the hand. One timestep is defined as one step of our physical simulator, and
equals roughly 10ms. After 100 time steps, we start a jiggling motion, that means a

33

Figure 4.7: Grasp evaluation, after 100 time steps, the robot hand moves on a prespec-
ified trajectory, until the object falls from the hand, or 1000 time steps are reached.

predefined rotation of the hand. We stop, if the object increases its distance from its
original relative position to the hand, or if 1000 time steps have elapsed. This motion is
indicated in Figure 4.7, where we have shown the start position (left), an intermediate
position during the jiggling motion, and the final time step, where the cylinder slides
from its original position downwards. The more time steps it takes, until the cylinder
leaves the hand, the more we can be sure that the grasp is robust.

e Length

To calculate the length of the trajectory, we simply take all the planned points on the
trajectory, and sum up the 12-norms of the configurations between them. The point is,
that we want to prefer shorter trajectories. Because the length varies between scenarios,
we cannot define a successful length, but we will incorporate it as an additional variable.

e Iterations

If a plan is unfeasible, the motion planner needs a longer time, because all possible
configurations have to be investigated. The standard approach in motion planning
is to use a cut-off time, at which we want to stop planning and declare the motion
planning task as unfeasible. Similiar to the cut-off time, we define a maximum number
of iterations, at which we stop planning, if the planner has not converged yet. The
number of iterations ¢ will be proportional to the planning time. We define that an
action was successfully planned, if ¢ is below a threshold of #; maximum iterations.

e Success rate

The most important variable is the success rate, which is defined for each evaluation
individually, and becomes one if certain requirements are fulfilled, and zero if not. We
discussed in Section 3.1, that in symbolic planning, only the start and the end state are
considered, but not what happens in between. If the robot bumps against an object,
this will be hidden from the symbolic level, in the case that the bumping does not
change a symbolic literal in the goal configuration. But the robot itself or the object
can be damaged, and we will therefore refrain from calling an action successful, if any

34

constraints are violated on the way.

Therefore, we define a success, if no constraints were violated on the final trajectory:

(4.20)

)1 ife<f.and m <0, and d < 6y and i < 0; (and g < 0,)
0 otherwise

(4.21)

whereby 6.,0,,, 04, 0; and 0, are the thresholds for collision, limit, distance, iterations
and grasp evaluation, respectively, as defined above. The grasp evaluation is set in
parenthesis, because it is only considered, if we evaluate the success of a symbolic
grasping action. The final g parameters are then defined by concatenating all variables
together

B = {da ¢, m,l,i,g,s} (422>

4.3.2 Vs,

The previously defined variables from the mapping W,_,3 measures the physical out-
come of the trajectory. After obtaining 3, the next step is to compute a scalar value ~,
which represents the goodness of the § values. While to maximize the success rate is
our main objective, we use the remaining variables to guide the optimization process.
This motivates the factorization of the mapping into:

WL = (s) (fold) + fol0) + fulm) + f5(D) + foi) + folg) (4.23)
ghominarieng — £ (s) x (f(d) + fo(e) + fa(m) + f5() + Fol0)) (4.24)

where we included the grasp evaluation in the symbolic grasping mapping, and have
chosen the corresponding functions fi.7 in a way, that we acquire a normalization of
the involved variables and that all of them are becoming minimization objectives. We
start by defining f; as

fl(s) = €s * (1 — S5+ 6offset) S € [0, 1] (425)

whereby s is the success rate, €; a normalization constant, and €, ¢4+ is an additional
constant offset, because we do not want to stop optimizing our objective function, even
if our primary goal s = 1 is reached. We further define f5.4 as

fo(d) = (9%) N d € [0, 00] (4.26)
na=(5)" ce [0, o0l (127)
nom = () m € [0, 0] (128)

35

whereby 6,4, 6. and 6,, are the thresholds of the distance, collision and limits, re-
spectively, and ng,n. and n,, are normalization constants. Similar, we define f5.7 as

f5(l) = (%)m [€ 10,00 (4.29)

foli) = (Z)m i €[0,00] (4.30)

i

f2(g) = (é__—gg’fn)ng 9 €10, gm] (4.31)

(4.32)

whereby n;,n;,n4, 1, 7; and n, are normalization constants. g,, represents the max-
imum number of time steps, until we stop the grasp evaluation, if the object did not
fall from the hand.

The normalization constants were chosen to be ng =5, n. =3, n,, =2, n; = 1.1,
n; = 1.1, ng = 2, g, = 1000, €, = 10, €5ffset = 0.2, m; = 50, n; = 50, and 7, = 200.

4.4 Covariance Matrix Adaption (CMA) to Opti-
mize P

Given the objective function for o from our motion primitive P, our goal is to search
for P* by finding the optimal o*. Because the search space is highly irregular, methods
such as gradient descent or simulated annealing were not successful in our initial ex-
periments. Therefore, we used an evolution strategy (ES) algorithm, called covariance
matriz adaption (CMA) (Hansen and Ostermeier, 1996; Hansen and Kern, 2004). ES
algorithms are classified by their number of parents y, their children A, the reproduction
type, and their selection type. The standard procedure involves sampling p parents
from an initial distribution, and using a reproduction technique to spawn A children.
Then, by using the best parameters of the last generations, a new set of children is
selected. A set of children is also called a generation or a population. CMA uses a
normal distribution to select the new population. The normal distribution is defined
by two parameters. First, its mean vector, which is calculated by using a weighted
average over the best parents. Second, the covariance matrix, which is calculated to
fit the search distribution to the contour lines of the objective function (Hansen, 2006).
An additional step size parameter varies the size of the covariance matrix.

To generate the first parent population, we randomly sample from the domain of
«. For the optimization task, we restricted it to o € [1072,10°]. We then evaluate the
objective function for each parent and calculate the v value. To generate a new set of
a values, CMA uses the equation (Hansen, 2006):

A& L N (m®, (0®)2c®) (4.33)

36

whereby g is the current generation, al({gﬂ) is the k-th offspring of the new generation

g+1, m® the mean value of the distribution of generation g, o is the step width and
C® the covariance matrix of the generation.

The mean value of the distribution is calculated by (Hansen, 2006):

I
mE+D) Zwi a8 (4.34)

i=1
whereby w; is a positive weight coefficient for recombination, z;., is the i-th best

“w

individual from the A children, and we constrain it to be Y w; = 1 and w; > 0 for i =
i=1

1,---, u. The weights w; are chosen proportional to the v evaluation of each «, which

effectively means, that the p best o parameters are weighted and used for the mean
calculation. For w; = 1/u, we would directly use the mean value of the p best «
parameters.

Please note, that the selection is usually divided into two categories: First, we could
select a new population by using all parents and children. This is called an elitist algo-
rithm and is depicted by the notation (u + \). Second, we could use only the children
to reproduce, which is called a non-elitist selection and depicted by (u, A), as seen in
Equation 4.34. In our experiments, we used an (1+40)-CMA elitist algorithm. As
discussed by Auger and Hansen (2005), a larger A can help us finding a better solution,
if the search space is highly nonlinear. Our A = 40 approach was a trade-off between
better solutions and the approximate calculation time.

4.5 Final Remarks on Optimizing P

We have shown in this Chapter, how we can in principle create a motion primitive P
from tasks ® and their precision parameters . In order to find the approximate optimal
motion primitive P*, we casted a to an optimization problem, and we introduced CMA,
in order to find a solution. Before we demonstrate that we are indeed able to find an
approximate optimal P* for different symbolic actions, we will briefly examine two
practical considerations. First, we will summarize the general assumption, on which
our approach is based. Second, we discuss the time consumption of the optimization
procedure.

4.5.1 General Assumptions

Optimizing P is mainly based on the assumption that a symbolic planner and a motion
planner are already predefined. But we also require that specific properties of the
framework are existent.

e The symbolic planner is able to handle uncertain state transitions

37

Our introduced symbolic framework was based on NID rules, which incorporated
non-deterministic state transitions. We generally require, that uncertain state transi-
tions can be handled. Otherwise, there would be only deterministic actions, which are
unrealistic, because of the uncertainty in a real environment.

e Each symbolic action has a desired outcome

Also, we need to know, which action outcome is desired. For example, if we use
the grasp(X) action, we desire to get the effect inhand(X). If the desired outcome is
unknown, it would be possible to use the outcome with the highest probability as the
desired one, but this is currently not supported.

e Motion Planner is able to incorporate P into the planning procedure

Of course, the motion planner has to be able to use the optimized P. While this
restricts the number of motion planner we can use, it is essential in order to define a
measurement of optimality. Otherwise, the uncertainty in state transitions would rise,
because we could only calculate feasible trajectories instead of optimal ones.

4.5.2 Time for Offline Optimization

The computation of P* requires us to obtain a trajectory for a fixed set of scenarios
K, in order to calculate the value v for one a. For each scenario, we have to invoke
the underlying motion planner. Furthermore, the CMA algorithm needs to compute
up to 2000 evaluations of 7, to converge to a solution for one symbolic action. In our
experiments, this took up to > 12 hours on a 2500 Mhz, 8GB Ram Laptop. But this
computation will be done offline, which means that we need to compute P* only once,
and are able to use it for future plans.

38

Chapter V

Experiments

In the previous section, we discussed the theoretical foundations, about how we can
optimize the desired transition probabilities of symbolic actions. In this section, we will
demonstrate, that this method can indeed increase the probabilities for a set of sym-
bolic actions. We therefore used three symbolic actions, GraspCylinder, PlaceCylinder
and Homing. The corresponding NID rules for each action are summarized in Figure
5.1. Each action has a transition probability, called the success rate , which we will
refer to as s. We simplified each rule by assuming that all undesired outcomes are
noise. Our goal will be to demonstrate that we are able to increase s for each action,
by optimizing the precision parameters « of its motion primitive P.

During the discussion about the experiments, we will make use of several definitions,
which we want to clarify here:

1. Scenario: A static environment, where the robot starts from a specific configu-
ration and has to fulfil a task, like grasping a purple cylinder. If we refer to a
scenario, this means the setting, not a planning procedure.

2. Scenario evaluation: Using a set of o precision parameters, a scenario evaluation
will apply the mappings V,_,, and ¥,_,5 to obtain a vector (.

3. Evaluation: The results from evaluating a set of scenarios. The obtained [values
are combined by the mapping Wsx_, 5 into one 3 value, and afterwards combined
to the scalar value v by using Ws_,,.

4. Trial: A set of evaluations. For example, if we optimize the parameters over 1000
evaluations by using CMA, we will call this one trial.

5. Experiment: The general term for describing what we intend to do. Usually an
experiment will involve the average over several trials to obtain a statistically
relevant outcome.

We conduct for each symbolic action two experiments. In the first experiment, we
want to show, how CMA can be used to optimize the o parameters of the motion
primitive P on a fixed set of K = 6 scenarios. Each a vector is constrained on the

39

Grasping | GraspCylinder(X): on(X,Y), cylinder(X), table(Y)
Sgrasp inhand(X), —on(X,Y)

1 — S4rasp noiSE

—

Placing | PlaceCylinder(X,Y): inhand(X), on(Y,Z), table(Z), cylinder(X)
Splace on(X,Y), —~inhand(X)

1 — Splace MOISE

—

Homing | Homing: — home(R), robot(R)

Shoming home(R)
_>)
1 — Shoming nOISE

Table 5.1: The three symbolic actions, which we optimized in our experiments. Each
one has a success rate called s, which describes the probability, that the outcome will
be reached.

domain a € [1073,10%]. During the optimization, we transformed « to the logarith-
mic space, because we observed during initial tests, that changing a small parameter
has a greater effect on the outcome. By applying the logarithmic transformation, the
optimization algorithm perfers to search more frequently in the the space of lower num-
bers. Finally, we will show the average results of CMA in comparison to a monte carlo
sampling technique. Monte Carlo (MC) sampling means, that we sample a parameter
vector a at random from the domain, calculate its v value, and compare it to the best
~ value obtained so far. If it is better, we choose the new « parameter as our best result.

In the second experiment we will show, how the obtained optimized a parame-
ters generalize to unseen scenarios, and how they perform, in comparison to manually
specified parameters by an expert. We therefore use the original scenarios and add
an uniform noise to the position of each object. Each object stands on a table with a
width and length of 0.4m. If we add a uniform noise of for example 0.2, this means,
that we add a random value from the uniform distribution ¢(—0.2m, +0.2m) to the «
and y position of the objects. To circumvent that objects touch each other, or that ob-
jects fall from the table, we repeat the noise adding procedure, until all constraints are
fulfilled. If the noise value increases, the scenario will become more and more unknown
to the robot. We will then show, how much noise can be added, until the success rate
s of each symbolic action converges.

Each experiment assumes, that a mapping from configuration space to relational
state space exists, which can be used to compare the desired goal state to the ob-
tained state from the goal configuration of the robot. We implement this by using
a shortcut over the success rate , which we defined in Section IV. For example, for

40

the GraspCylinder action, we investigate, if any limits or collisions are reached, if the
motion planner has converged, if the center of the hand coincides with the center of
the cylinder which we want to grasp, and if the grasp was successful, which means,
that indeed inhand(X) is fulfilled. Please note, that this is a more strict mapping to
relational space, for two reasons. First, instead of using the final configuration, we
additionally check if there was any collision or limit violation. If this is true, we regard
the next state as not successful. Second, we instantiate a grasp evaluation procedure
at the final position. If the cylinder is not correctly grasped, it will fall from the hand,
and we conclude that inhand(X) is not fulfilled. Both are additional restrictions on
the relational state, which were not used in the original mapping. This is why the
manually specified parameters are much worse in our experiments. Nevertheless, we
think that both restriction are necessary, in order to correctly identify a successful state
transition, and obtain parameters which are more robust against noise.

Before showing the experimental results, we will briefly introduce our computa-
tional tools used here. We conducted each experiment on a simulated robotics plat-
form, using the libraries Open Dynamics Engine (ODE)' for physical simulations and
SWIFT++? for proximity measurements. Furthermore, we used the SHARK? library
for the calculation of the covariance matrix adaption (CMA) algorithm.

thttp://www.ode.org/
2http://gamma.cs.unc.edu/SWIFT++/
3http://sourceforge.net /projects/shark-project/

41

Figure 5.1: A set of scenarios for evaluating the GraspCylinder action. In each experi-
ment, the robot has to grasp the purple cylinder, while avoiding to touch green objects
or the table.

5.1 Optimizing Grasping Action

The symbolic grasping action will be optimized by using 6 different scenarios. In each
scenario, the robot has to grasp a purple cylinder, as depicted in Figure 5.1. The choice
of those scenarios was motivated by situations, which were difficult to perform for the
motion planner, by using manually specified parameters by an expert. We compute
the v value for one set of a parameters by calculating the average over one evaluation,
as discussed in Chapter IV. Our optimization algorithm CMA (1+40) will optimize the
parameters, until a number of 2000 evaluations is reached. Because we do not have any
guarantee on convergence to the global optimum, we restart the algorithm 10 times.
Our main interest will be to show how many evaluations are on average necessary to
reach the maximum success rate sg,qsp-

This optimization process can be seen in Figure 5.2. It shows in the upper graph the
success rate Sgrqsp, for CMA, MC and the manually specified parameters by an expert.
One can see, that we obtained a sg.4s, of zero for the manually specified parameters.
This is due to the more restricted choice of our success calculation, as discussed above,
and the choice of challenging scenarios, where we observed in pre-experiments, that
it was difficult to obtain a successful grasp. Between CMA and MC, we can observe
that CMA slightly outperforms MC during the optimization. The lower graph addi-

42

tionally shows the scalar value v for each evaluation. While the manually specified
parameters lead to a worse 7, we can observe that CMA and MC are both able to
optimize the value. Please note that we inverted the y-axis, so that both desired values
of sgrasp = 1.0 and v = 0.0 are at the top of the graph.

The results for the final evaluation step is depicted in Table 5.2. It shows the
average success rate Sgqsp and the average v for both CMA and MC, together with
the value for one evaluation of the manual specified parameters. Please note, that
the evaluation of one « is deterministic, because we removed uncertainty by using a
constant start configuration in each scenario. Otherwise, we would have to repeat the
evaluation of each scenario multiple times. Table 5.2 finally shows that, on average, the
CMA algorithm outperforms MC sampling and can obtain better values for v and Sg,4sp.

So far we demonstrated, that we can obtain a parameters, which achieve a higher
success rate Sgrqsp on the initial set of scenarios. The next step is to compare the
final trajectories, which were planned by using manually specified parameters and the
optimized ones. We showed the final trajectories for each scenario from three different
points of view in Figure 5.3 and 5.4, respectively. In each image, three lines can be
seen, which correspond to the position of the center of the tip of the robot fingers
at different instances of time during the execution. The obtained trajectory by using
manually specified parameters are shown in blue with a dashed line, and the one by
using optimized parameters with a solid red line. While both trajectories seem to be
similar, we could observe, that the manual parameters had a significantly worse grasp
evaluation. Moreover, in 5 of 6 cases, we observed, that the outer fingers collided dur-
ing the grasp. This is not visible in the images, but is the reason, why the manual
parameters cannot obtain a successful state transition in the shown scenarios.

After showing, that we are able to optimize the parameters on a fixed set of sce-
narios, we want to show, that the new obtained parameters can significantly improve
planning, even in unseen scenarios. Therefore, we added uniform noise to each object
position, as explained in the previous section. For each noise value, we performed 200
evaluations on each scenario. For a noise of 0.0, the scenarios are the same as in our
optimization experiment. If the noise increases, the scenarios become random arrange-
ments. We end up with a total of 1200 scenarios for each noise value between 0.0 to
1.0. Altogether we evaluated a total of 40 different noise values by using a step size
of 0.025. The results can be seen in Figure 5.5. If we start with zero noise, the best
a parameter from our optimization process can reach a success rate of Sgqs = 1.0,
while the manual specified parameters have sg.., = 0.0, as we discussed above. If
we increase the noise value, the scenarios become more and more random. We can
observe, that the manual parameters get better, because there will occur easier scenar-
ios more frequently, and also those scenarios, which the expert used to optimize. The
optimized parameters can be seen to decrease, because the learned scenarios will occur
more seldom. Nevertheless, even in random scenarios, the optimized parameters reach
a higher success rate as the manual ones. Eventually, we compared the average success
rate at the noise values of 0.0,0.5 and 0.9 in Table ??, where we show the NID rules,

43

obtained by evaluating 1200 scenarios. In the left column, we can see the results of
the success rate , by using a manual specified P. The right column shows the results
after we used our optimized P*parameters. The best success rate for each noise value
is highlighted in red. The symbolic NID rules in this formalization can directly be used
by a symbolic planner.

44

Optimizing success rate of symbolic action 'grasping'

1 T

0.8 -

0.4
0.2

Success Rate
o
(@)
\
L
N)
|)

10

Gamma Value
|—
1

100 | | | | | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Evaluations

CMA (1+40) ——
Monte Carlo Sampling
Manual Parameters

Figure 5.2: The upper graph shows the average number of evaluation steps for
CMA(1440), which are necessary to reach a specific success rate. In the lower graph,
the average fitness value is shown. It can be seen, that the CMA(1440) converges to
a success rate of 1 for this experiments after approximately 1300 evaluations.

‘ Algorithm ‘ a9 ‘ Sarasp
Optimized parameters (10 trials) | 2.73 | 1.00
Monte Carlo Sampling (10 trials) | 5.59 | 0.92

Manual specified parameters 38.58 | 0.00

Table 5.2: Comparison between optimized, manual and random parameters for the

GraspCylinder experiment

45

Viewpoint View Top View Right View Left

Scenario

Scenario 0

Scenario 1

Scenario 2

Figure 5.3: The final grasping trajectories in the first three scenarios and from three
different perspectives, each with the CMA-optimized parameters (red,solid) compared
to the manual parameters (blue, dashed), specified by an expert. See text for clarifi-
cations.

46

Viewpoint View Top View Right View Left

Scenario

Scenario 3

Scenario 4

Scenario 5

Figure 5.4: Final trajectories on the last three scenarios. Compare with Figure 5.3.

47

Generalization of Parameters
1 { { { { T ! r =

Success Rate Sgraqp,

0 r | | | | | \ r |]
0O 01 02 03 04 05 06 07 08 09 1

Uniform Noise

Optimized parameters =——e—
Manual specified parameters =——em——

Figure 5.5: Generalization to unseen scenarios. Starting from the initial set of scenar-
ios, on which the parameters were optimized, we increase the noise, until the scenarios
are completely random. It can be seen that the optimized parameters obtain a bet-
ter generalization, in comparison to the manually specified ones. Each datapoint is
obtained by calculating the average success rate over 1200 scenarios. See text for

clarifications.

48

Uniform

Symbolic NID Rules

Noise With Manual P \ With Optimized P*
0.0 GraspCylinder(X): on(X,Y), GraspCylinder(X): on(X,Y),
cylinder(X), table(Y) cylinder(X), table(Y)
. 0.0 inhand(X),-on(X,Y) . 1.0 inhand(X),—-on(X,Y)
1.0 noise 0.0 noise
0.5 GraspCylinder(X): on(X,Y), GraspCylinder(X): on(X,Y),
cylinder(X), table(Y) cylinder(X), table(Y)
0.26 inhand(X),—on(X,Y) . 0.48 inhand(X),-on(X,Y)
0.74 noise 0.52 noise
0.9 GraspCylinder(X): on(X,Y), GraspCylinder(X): on(X,Y),
cylinder(X), table(Y) cylinder(X), table(Y)
. 0.29 inhand(X),—on(X,Y) . 0.47 inhand(X),-on(X,Y)
0.71 noise 0.53 noise

49

5.2 Optimizing Placing Action

The second symbolic action which we optimized is the PlaceCylinder action. Likewise
to the GraspCylinder action, we used K = 6 scenarios for one evaluation of a param-
eter vector a. The start configurations for the 6 different scenarios can be seen in
Figure 5.6. They are similar to the GraspCylinder action, but with a different starting
configuration, where the hand of the robot is grasping the purple cylinder. Before the
motion planner is started, the hand closes, until all fingers are touching the surface
of the cylinder. The goal of each scenario is then to place the purple cylinder onto
the green cylinder. Similar to the GraspCylinder action, we optimized the parameters
by using CMA and MC sampling. Figure 5.7 shows the optimization process for both
methods. Each function represents the average over 10 trials. The results for the fi-
nal evaluation of CMA can be found in Table 5.3, together with the comparison to
MC and manually specified parameters. The final trajectories, obtained by using the
best optimized o parameters from CMA and the manually specified ones, are shown
in Figure 5.8. We can see that there is a big discrepancy between manual and CMA,
which is mainly due to the difficult set of scenarios, which we intentionally used to be
able to generalize better to future scenarios. Each scenario, which is depicted in Figure
5.8 and Figure 5.9, respectively, was successfully finished by the optimized parameters
(red, solid line). The trajectories, obtained by manual parameters (blue, dashed line),
either lead to a collision between the two cylinders (Scenarios 1 — 4), or do not reach
the goal position (Scenarios 0,5). This is also reflected in the v value, as depicted in

Table 5.3.

Eventually, similar to the GraspCylinder action, we performed an experiment,
which demonstrates, how the optimized parameters generalize to unseen scenarios.
Figure 5.10 shows the performance of the success rate , if we add different uniform
noise distributions to the position of the objects. It can be seen, that the manual spec-
ified parameters lead to a success rate of zero, which is caused by our very restrictive
computation of the success rate . In detail, this is caused by a lower precision to avoid
collisions. In all experiments, we could observe, that this lower precision leads to a
collision between the purple cylinder and the green one during the end of each trajec-
tory. While this collision often does not cause damage, our goal is to avoid any collision
during the execution. Therefore, we declare the plan as non successful, even if there is
only a minimal collision. The final graph in Figure 5.10 consists of datapoints, which
show the average success rate of 420 scenario evaluations. Additionally, the resulting
symbolic NID rules for different noise levels are summarized in Table 5.4.

50

Figure 5.6: A set of scenarios for evaluating the PlaceCylinder action. In each experi-
ment, the robot has to place the purple cylinder on the green cylinder, while avoiding
to touch green objects or the table.

51

Optimizing success rate of symbolic action 'placing’

© 1 n
g 08 |
% 0.6 HL:I’I.
[
= 0.4 - B
N

0.2 ! : . - - R

0

@ T TTTT
B -—
<
>] =1TITLT
g 10 B . B s~ _1F J_"J.“,J.“J:'li
g
<
(@)

100 | | | | | | | | |

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Evaluati
valuations CMA (1-+40)

Monte Carlo Sampling
Manual Parameters

Figure 5.7: CMA (14+40) with random initializations, averaged over 10 different restart.
This optimization routine uses the set of experiments from Figure 5.6.

| Algorithm | Y9 | sovg
Optimized parameters (10 trials) 341 0.82
Monte Carlo Sampling (10 trials) 5.88 0.68
Manual specified parameters 1784226.95 | 0.00

Table 5.3: Comparison between optimized, manual and random parameters for the
PlaceCylinder experiment

52

Viewpoint View Top View Right View Left

Scenario

Scenario 0

£
[
=
=
=
=
=
=
=
3
3
3
]

Scenario 1

Scenario 2

Figure 5.8: The final placing trajectories from three different perspectives. In each per-
spective, we can see the plan computed by using CMA-optimized parameters (red,solid)
compared to plans based on manual specified parameters (blue, dashed). Each row
shows the results from one experiment of Figure 5.6. The columns represent different
points of view. In the first column, we see the scenario from the top, in the second from
the left and in the third from the right with respect to the robot. The trajectories,
based on the optimized parameters, were successful in all experiments, while all plans
with manual parameters were not able to meet our success criteria. This can be seen in
the last two experiment rows, where the plans with manual parameters lead to a colli-
sion between both cylinders. The first experiment shows that the manual specification
of parameters can also lead to plans, where the final goal is not even reached.

53

Viewpoint View Top View Right View Left

Scenario

Scenario 3

Scenario 4

Scenario 5

Figure 5.9: Each row represents the last three experiments from Figure 5.6. It can
be seen, that the plans computed with manual specified parameters were not able
to compute a collision free path in the first two rows of experiments. In the last
experiments, we again see that the final goal was not reached. Plans computed with
CMA-optimized parameters (red,solid) were able to find successful plans in all cases.

54

Generalization of Parameters

Success Rate spjace

0.2 -

OWWW
0 01 02 03 04 05 06 07 08 09 1

Uniform Noise

Optimized parameters =——e—
Manual specified parameters =——em——

Figure 5.10: Generalization to unseen scenarios. Similar to the GraspCylinder eval-
uation, we added a uniform noise to the position of the objects. As can be seen,
the optimized parameters maintain a high success rate, even for completely random
actions. Because of our very restrictive success rate, the manual parameters cannot
obtain a single success. Each datapoint is obtained by the average over 420 scenarios.

See text for clarifications.

95

Uniform Symbolic NID Rules

Noise With Manual P \ With Optimized P*
0.0 PlaceCylinder(X,Y): PlaceCylinder(X,Y):
inhand(X), on(Y, Z), inhand(X), on(Y, Z),
table(Z), cylinder(X) table(Z), cylinder(X)
0.0 on(X,Y),-inhand(X) . 1.0 on(X,Y),~inhand(X)
1.0 nouse 0.0 noise
0.5 PlaceCylinder(X,Y): PlaceCylinder(X,Y):
inhand(X), on(Y, Z), inhand(X), on(Y, Z),
table(Z), cylinder(X) table(Z), cylinder(X)
0.0 on(X,Y),-inhand(X) . 0.68 on(X,Y), minhand(X)
1.0 noise 0.32 noise
0.9 PlaceCylinder(X,Y): PlaceCylinder(X,Y):
inhand(X), on(Y, Z), inhand(X), on(Y, Z),
table(Z), cylinder(X) table(Z), cylinder(X)

1.0 noise 0.38 noise

{0.0 on(X,Y), ~inhand(X) _>{O.62 on(X,Y), —inhand(X)

Table 5.4: Comparison of the average state transition probability of the PlaceCylinder
action. In each row, a different level of uniform noise is added to the starting scenarios,
on which we optimized P.

5.3 Optimizing Homing Action

Our last symbolic action, which we optimized, is the Homing action. The goal of
this action is to return the robot to a predefined home position. We used the same
start configurations as for the PlaceCylinder action and started the motion planner
to find a plan towards the home position. This action has a smaller parameter space,
compared to GraspCylinderand PlaceCylinder. Additionally, the manual parameters
already showed successful results in each scenario. Figure 5.11 shows the results of
the optimization procedure. The upper graph shows the success rate , which does not
change, because we obtained a success in each scenario. The lower graph shows, that
by using CMA, we could achieve a better gamma value in comparison to the manual set
of parameters. Table 5.5 shows, that CMA also leads to a smaller v value, but which is
not statistically significant. Similar to the other two symbolic actions, we visualized the
final trajectories of each scenario. Figure 5.12 and Figure 5.13, respectively, show that
the difference for manual specified parameters (blue,dashed) is not visible in comparison
to the optimized parameters (red,solid). Nevertheless we could decrease the number

56

of iterations to converge, which leads to the better v value. To show, that we can also
use Homing to generalize, we conducted the same experiment as for the GraspCylinder
and PlaceCylinder action. For each noise level, we used the average over 540 scenarios
to obtain the success rate . The optimized parameters have a slightly increased success
rate , compared to manual parameters, as depicted in Figure 5.14 and in the success
rate of the NID rules in Table 5.15.

Optimizing success rate of symbolic action 'homing'

Success Rate

Gamma Value

1 | | | | | | |
0 1 2 3 4 5 6 7 8 9

Evaluations CMA (1-40)

Monte Carlo Sampling
Manual Parameters

Figure 5.11: Homing experiment

’ Algorithm ‘ o9 ‘ Sorasp
Optimized parameters (10 trials) | 0.58 | 1.00
Monte Carlo Sampling (10 trials) | 0.61 | 1.00

Manual specified parameters 0.93 | 1.00

Table 5.5: Comparison between optimized, manual and random parameters for the
Homing experiment

57

Viewpoint View Top View Right View Left

Scenario

Scenario 0

Scenario 1

oW i
Scenario 2 ‘v
1‘ - .

Figure 5.12: Comparison between the final trajectories, computed by using the CMA
optimized parameters for the symbolic homing action (red,solid), and the manually
specified parameters (blue, dashed). Both sets of parameters lead to a successful state
transition, while the difference is not visible from the trajectories.

58

Viewpoint View Top View Right View Left

Scenario

Scenario 3

Scenario 4

Scenario 5

Figure 5.13: The last three scenarios, which similarly to Figure 5.12 show identical tra-
jectories obtained by manual parameters (blue,dashed) and optimized ones (red,solid).

59

Generalization of Parameters

1F ! ! { { T ! ; =
o0
=
g
@]
=
wn
)
+~
<
o
@ 0.8 —
5]
Q
O
=}
5]
0.6 | | | | | | | | |

0 01 02 03 04 05 06 07 08 09 1

Uniform Noise

Figure 5.14: Generalization to unseen scenarios. Starting from the initial scenarios, we
add an uniform noise to the objects in the scene, and measure the success rate on 540
scenarios. On average, the optimized parameters have a slight advantage, compared to

manual specified parameters.

60

Uniform Symbolic NID Rules

Noise With Manual P \ With Optimized P*
0.0 Homing: — home(R), robot(R) | Homing: — home(R), robot(R)
{0.84 home(R) . 0.89 home(R)
0.16 noise 0.11 noise

0.5 Homing: — home(R), robot(R) | Homing: — home(R), robot(R)
. {0.92 home(R) . {0.95 home(R)

0.08 noise 0.05 noise

0.9 Homing: — home(R), robot(R) | Homing: — home(R), robot(R)
{0.95 home(R) R {0.97 home(R)

0.05 notse 0.03 noise

Figure 5.15: Comparison of the average state transition probability of the Homing
action. In each row, a different level of uniform noise is added to the starting scenarios,
on which we optimized P. It can be seen, that on average, there is a slight advantage
for the optimized P*.

5.4 Discussion of Results

We conducted an offline optimization of the precision parameters o of a motion prim-
itive P for three symbolic actions: GraspCylinder, PlaceCylinder and Homing. We
have seen, that CMA is able to find a robust set of precision parameters « for each
symbolic action, and that the final trajectories are indeed more successful to reach the
desired outcomes, in comparison to a manual specified set of parameters. Given the
best optimized «, we conducted a second experiment, where we investigated, if « is
able to generalize to unseen scenarios. The outcome showed, that the optimization
approach indeed leads to better generalization than manually specified ones.

The NID rules, which we obtained in these experiments can be directly incorporated
into a symbolic planner. Each rule is optimized to achieve a higher probability for a
desired outcome. This leads to more feasible symbolic plans, because the planner can
rely on a set of more robust symbolic actions, which have been optimized in a physical
environment.

61

Chapter VI

Conclusion

Planning a high level task is usually approached by using two separated planners.
First, a symbolic planner, which can solve the high level task by breaking it down
into smaller subtasks. Second, for each subtask, a motion planner is started to plan a
feasible trajectory. We discussed in Section 3.1, that the abstraction of the symbolic
level leads to several difficulties, which in turn lead to a lower probability to find a
feasible trajectory for a specific symbolic state transition. Our approach, which we
introduced in Chapter IV focuses on integrating both planning levels by computing an
approximate optimal motion primitive P*, which increases a desired state transition
probability. This motion primitive is based on two variables, first the constraints of
the motion planner, and second, the importance of each constraint. Given a motion
primitive, the underlying motion planner can compute an optimal trajectory, which is
more robust against noise in comparison to a non optimal, feasible trajectory. The goal
of this thesis was to find P*, the approximate optimal motion primitive, which could
increase the desired success rate of a symbolic action. The success rate was defined for
each symbolic action, as the desired state transition probability.

To measure different P and compare them to each other, we defined a mapping
from a motion primitive P, of a symbolic action, onto a single scalar value 7, which
was inversely proportional to its success rate . This global mapping was defined as a
concatenation of internal mappings, which we defined in Chapter IV. We started by
defining a mapping from P to a trajectory ¢, which is obtained by invoking a motion
planner. The input of the motion planner is given by a constant start configuration,
constant goal configuration, and a specific scenario, on which we evaluate P. After-
wards, we devised a mapping from trajectory ¢ to a set of variables 3, which measures
the trajectory in terms of physical variables like avoidance of collisions, limits or the
symbolic success rate. Eventually, a function from £ to v then maps all measured
variables to a scalar value v, which describes the goodness of a specific P. Based on
the mappings, we defined an optimization problem for the precision parameters of P,
which defines the importance of the involved constraints. By using covariance matrix
adaption (CMA), we could demonstrate, that for each symbolic action, an approximate
optimal P* can be found, which increases the desired state transition probability on
a fixed set of scenarios. Finally, we added different uniform noise to the fixed set of

62

scenarios, and measured the success rate of the symbolic actions. This demonstrated
that even in random scenarios, the optimized motion primitive can lead to a better
success rate , in comparison to manually specified primitives.

Altogether it is evident, that an integration of symbolic planning and motion plan-
ning can indeed lead to more robust and feasible trajectories, which are able to increase
the state transition probability of a desired symbolic outcome. This work can be seen
as a first step towards finding the optimal constraints of a motion planner, which in
turn increase the performance of the symbolic planner. We therefore conclude this
thesis by showing possible future research directions.

6.1 Future Research Directions

There are several possible tracks to advance the presented optimization approach to
motion primitives. An important aspect of all tracks will be to optimize primitives
offline, and using them for future planning tasks.

Our first future research question affects our optimization algorithm. To optimize
P, we used an elitist CMA algorithm, which consisted of a population of 1 p plus 40 A.
An interesting question is, how we can speed up the optimization, by using different u
and A combinations.

In Chapter V, we demonstrated that the optimized parameters can generalize to
unseen scenarios. But it is still an open question, about how we can increase the success
rate of a symbolic action in unseen scenarios, i.e. how we can better generalize. To
generalize, it is important to introduce a regularization function, in order to prevent
overfitting. An important research topic is how we can define such a regularization
function, and how this changes our mappings.

Besides changing the algorithm and introducing regularization, we can also change
the input to our objective function. Optimizing P was based on a static set of tasks.
But it is also possible to introduce a dynamic set of tasks, for example by manipulating
the task targets or including all possible tasks available. This would require us to intro-
duce new variables, which could directly be incorporated into the mappings we devised.

Besides dynamic tasks, another important aspect is to concentrate on feedback
plans. While we generally assumed a static environment, a feedback plan could in-
clude perceptual variables, which directly act on dynamic changes in the environment.
An optimization of P for feedback plans could additionally improve the number of
feasible trajectories, and therefore lead to a higher success rate .

Finally, we note that our approach can only find the approximate optimal P* due

to the fact that we do not have a guarantee to find the global optimum by using CMA.
An important future research question will therefore be, if we can find an algorithm,

63

which can guarantee to find the global optimum for a fixed set of scenarios.

64

Bibliography

Auger, A. and Hansen, N. (2005). A restart cma evolution strategy with increasing
population size. In Congress on Evolutionary Computation, pages 1769-1776. IEEE.

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., and Pappas, G. J. (2007).
Symbolic planning and control of robot motion: Finding the missing pieces of current
methods and ideas. Robotics and Automation Magazine, 14(1):61-70.

Bretl, T., Lall, S., Latombe, J.-C., and Rock, S. (2004). Multi-step motion planning
for free-climbing robots. In Workshop on the Algorithmic Foundations of Robotics
(WAFR).

Cambon, S., Alami, R., and Gravot, F. (2009). A hybrid approach to intricate motion,
manipulation and task planning. Int. J. Rob. Res., 28(1):104-126.

Choi, J. and Amir, E. (2009). Combining planning and motion planning. In ICRA,
pages 238-244.

Cohen, B. J., Chitta, S., and Likhachev, M. (2010). Search-based planning for manip-
ulation with motion primitives. In ICRA, pages 2902-2908. IEEE.

Cohen, B. J., Subramania, G., Chitta, S., and Likhachev, M. (2011). Planning for
manipulation with adaptive motion primitives. In ICRA, pages 5478-5485. IEEE.

Craig, J. J. (1989). Introduction to Robotics: Mechanics and Control. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition.

Dornhege, C., Eyerich, P., Keller, T., Brenner, M., and Nebel, B. (2010). Integrating
task and motion planning using semantic attachments. In Bridging the Gap Between

Task and Motion Planning, volume WS-10-01 of AAAI Workshops. AAAL

Fainekos, G. E., Girard, A., Kress-Gazit, H., and Pappas, G. J. (2009). Temporal logic
motion planning for dynamic robots. Automatica, 45(2):343-352.

Fikes, R. and Nilsson, N. J. (1971). Strips: A new approach to the application of
theorem proving to problem solving. In IJCAI pages 608—620.

Hansen, N. (2006). The CMA evolution strategy: a comparing review. In Lozano,
J., Larranaga, P., Inza, 1., and Bengoetxea, E., editors, Towards a new evolution-
ary computation. Advances on estimation of distribution algorithms, pages 75—102.
Springer.

65

Hansen, N. and Kern, S. (2004). Evaluating the CMA evolution strategy on multimodal
test functions. In Yao, X. et al., editors, Parallel Problem Solving from Nature PPSN
VIII, volume 3242 of LNCS, pages 282-291. Springer.

Hansen, N. and Ostermeier, A. (1996). Adapting arbitrary normal mutation distri-
butions in evolution strategies: The covariance matrix adaptation. In International
Conference on FEvolutionary Computation, pages 312-317.

Hauser, K. and Latombe, J.-C. (2009). Integrating task and prm motion planning:
Dealing with many infeasible motion planning queries. In Workshop on Bridging the
Gap Between Task and Motion Planning. ICAPS.

Hauser, K. K., Bretl, T., Harada, K., and Latombe, J.-C. (2006). Using motion primi-
tives in probabilistic sample-based planning for humanoid robots. In Akella, S., Am-
ato, N. M., Huang, W. H., and Mishra, B., editors, WAFR, volume 47 of Springer
Tracts in Advanced Robotics, pages 507-522. Springer.

Hespanha, J. P. (2009). Linear Systems Theory. Princeton Press, Princeton, New
Jersey.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002a). Learning rhythmic movements by
demonstration using nonlinear oscillators. In In Proceedings of the IEEE/RSJ Int.
Conference on Intelligent Robots and Systems (IROS2002), pages 958-963.

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002b). Movement imitation with non-
linear dynamical systems in humanoid robots. In In IEEFE International Conference
on Robotics and Automation (ICRA2002), pages 1398-1403.

Kaelbling, L. P. and Lozano-Pérez, T. (2011). Hierarchical task and motion planning
in the now. In ICRA, pages 1470-1477.

Kober, J., Miilling, K., Kroemer, O., Lampert, C. H., Scholkopf, B., and Peters, J.
(2010). Movement templates for learning of hitting and batting. In ICRA, pages
853-858.

Kober, J. and Peters, J. (2009). Learning motor primitives for robotics. In ICRA,
pages 2112-2118.

Kober, J. and Peters, J. (2011). Learning elementary movements jointly with a higher
level task. In TROS, pages 338-343.

Koenig, S. (2010). Creating a uniform framework for task and motion planning: A
case for incremental heuristic search? In ICAPS, pages 254-258.

Lang, T. (2011). Planning and Exploration in Stochastic Relational Worlds. PhD
thesis, Fachbereich Mathematik und Informatik, Freie Universitit Berlin.

Lang, T. and Toussaint, M. (2009). Approximate inference for planning in stochastic
relational worlds. In Proc. of the Int. Conf. on Machine Learning (ICML), pages
585-592.

66

Lang, T. and Toussaint, M. (2010a). Planning with noisy probabilistic relational rules.
Journal of Artificial Intelligence Research, 39:1-49.

Lang, T. and Toussaint, M. (2010b). Probabilistic backward and forward reasoning in
stochastic relational worlds. In Proc. of the Int. Conf. on Machine Learning (ICML).

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cambridge,
U.K.

LaValle, S. M. (2011a). Motion planning: The essentials. IEEE Robotics and Automa-
tion Society Magazine, 18(1):79-89.

LaValle, S. M. (2011b). Motion planning: Wild frontiers. IEEE Robotics and Automa-
tion Society Magazine, 18(2):108-118.

Loeliger, H.-A. (2004). An introduction to factor graphs. [IEEE Signal Processing
Magazine, 21(1):28-41.

Meier, F., Theodorou, E., Stulp, F., and Schaal, S. (2011). Movement segmentation
using a primitive library. In International Conference on Intelligent Robots and
Systems (IROS).

Park, D.-H., Hoffmann, H., Pastor, P., and Schaal, S. (2008). movement reproduction
and obstacle avoidance with dynamic movement primitives and potential fields. In
IEEFE International Conference on Humanoid Robots, 2008.

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2004). Learning probabilistic
relational planning rules. In Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling.

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2007). Learning symbolic
models of stochastic domains. Journal of Artificial Intelligence Research, 29:309—
352.

Peters, J., Miilling, K., Kober, J., Nguyen-Tuong, D., and Krémer, O. (2009). Towards
motor skill learning for robotics. In ISRR, pages 469-482.

Plaku, E. and Hager, G. D. (2010). Sampling-based motion and symbolic action plan-
ning with geometric and differential constraints. In ICRA, pages 5002-5008.

Rawlik, K., Toussaint, M., and Vijayakumar, S. (2010). Approximate inference and
stochastic optimal control. CoRR, abs/1009.3958.

Russell, S. J. and Norvig, P. (2010). Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education.

Sucan, I. A. and Kavraki, L. E. (2011a). Mobile manipulation: Encoding motion
planning options using task motion multigraphs. In ICRA, pages 5492-5498.

67

Sucan, I. A. and Kavraki, L. E. (2011b). On the advantages of task motion multigraphs
for efficient mobile manipulation. In TROS, pages 4621-4626.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents series). Intelligent robotics and autonomous agents. The
MIT Press.

Toussaint, M. (2009). Robot trajectory optimization using approximate inference. In
ICML, page 132.

Toussaint, M., Gienger, M., and Goerick, C. (2007). Optimization of sequential
attractor-based movement for compact behaviour generation. Humanoid Robots 2007
7th IEEERAS International Conference on, pages 122—129.

Toussaint, M. and Goerick, C. (2010). A bayesian view on motor control and planning.
In From Motor Learning to Interaction Learning in Robots, pages 227-252.

Wolfe, J., Marthi, B., and Russell, S. (2010). Combined task and motion planning
for mobile manipulation. In International Conference on Automated Planning and

Scheduling.

Younes, H. L. S. and Littman, M. L. (2004). Ppddll.0: An extension to pddl for
expressing planning domains with probabilistic effects. Technical report, Carnegie
Mellon University, Pittsburgh, PA.

68

Hiermit erklare ich an Eides statt, dass ich die vorliegende Arbeit selbststandig und
eigenhandig sowie ausschliefflich unter Verwendung der aufgefithrten Quellen und
Hilfsmittel angefertigt habe.

Berlin, den

Unterschrift

