
Optimizing Motion Primitives to Make Symbolic Models More
Predictive

Andreas Orthey, Marc Toussaint and Nikolay Jetchev

Abstract— Solving complex robot manipulation tasks re-
quires to combine motion generation on the geometric level with
planning on a symbolic level. On both levels robotics research
has developed a variety of mature methodologies, including
geometric motion planning and motion primitive learning on
the motor level as well as logic reasoning and relational Rein-
forcement Learning methods on the symbolic level. However,
their robust integration remains a great challenge. In this paper
we approach one aspect of this integration by optimizing the
motion primitives on the geometric level to be as consistent
as possible with their symbolic predictions. The so optimized
motion primitives increase the probability of a “successful”
motion—meaning that the symbolic prediction was indeed
achieved. Conversely, using these optimized motion primitives to
collect new data about the effects of actions the learnt symbolic
rules becomes more predictive and deterministic.

I. INTRODUCTION

Reinforcement Learning (RL) is one of the most promising
approaches towards autonomously learning agents. In the
field of robotics, RL has successfully been applied on both,
the motor as well as the symbolic level, which is necessary
because in natural environments an agent has to reason on
a geometric as well as on an abstract level to learn and
plan sequences of motor primitives [1]. Concerning the first,
motion primitive learning [2] has been rather successful in
dealing with the high-dimensional state spaces of general
dynamic control problems and allowing the autonomous
learning of robot motor skills that would otherwise be hard
to program explicitly by an engineer. Concerning symbolic
manipulation, recent advances in relational RL [3] have
successfully tackled the challenges of the exponential state
space spanned by the relations and properties of objects,
leading to efficient methods for learning and generalizing
of relational rules, using them for planning, and driving
exploration in relational domains to speed up learning [4].
These two “extremes” – motion primitive learning on the
motor level and relational Reinforcement Learning on the
symbolic level – would need to be eventually combined
in order to yield an integrated approach to Reinforcement
Learning in robotics.

The present paper addresses one issue in the integration of
these extremes. Standard relational RL assumes the existance
of a fixed set of actions, respectively motion primitives,

A. Orthey is with CNRS/LAAS, Université de Toulouse UPS, INSA, INP,
ISAE, F-31077 Toulouse, France. aorthey@laas.fr

M. Toussaint is with the Machine Learning and Robotics Lab,
University Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany.
marc.toussaint@informatik.uni-stuttgart.de

N. Jetchev is with the Machine Learning and Robotics
Lab, FU Berlin, Arnimallee 7, 14195 Berlin, Germany.
nikolay.jetchev@fu-berlin.de

which it uses to explore the domain and learn probabilistic
rules. This choice of motion primitives therefore determines
the symbolic data that is being collected. For instance,
using mediocre motion primitives for pick&place will lead
to experiences where objects fail to be lifted or drop, and
the learned rules will be more stochastic. In this paper we
propose to use the learned relational rules as a criterion to
re-train motion primitives so that the rules become more
predictive. This implies an iterative bootstrapping process,
where we start with an initial set of motion primitives, use
them to collect symbolic data and learn relational rules, then
use the learned rules to re-train the motion primitives, and
so forth. The idea is that the learning on the symbolic and
motion primitive level should inform each other, leading to a
set of motion primitives that is most coherent with symbolic
predictive models.

In Section II we will discuss related work before, in Sec-
tion III we introduce relevant background on relational RL as
well as the motion planning methods that we use to generate
motion primitives. Section IV describes our contributions:
the specific parameterization of our motion primitives, an
objective function measuring how the primitives fit to the
learned relational rules, and the optimization procedure.
Section V reports on our evaluations, where we consider
pick and place scenarios that proved challenging to hand
tuned parameters and show how our optimization leads to
better motion primitives.

II. RELATED WORK

Large-scale demonstrations of complex manipulation
tasks, integrating symbolic reasoning with motion planning,
has been the topic of a number of projects. Beetz et al. [5]
[6] considered an assistive kitchen scenario and demonstrated
tasks like cooking a pancake. Asfour et al. [7] considered
similarly complex kitchen tasks that require sequential ma-
nipulation. These approaches exploit reasoning on a symbolic
level to different extends, but the motion primitives are
designed by hand instead of implied by and optimized to
be consistent with the symbolic action model. Our work
eventually aims to make such integrated systems more robust
by iteratively optimizing the motion and symbolic levels for
consistency.

Learning motion primitives has been the focus of a very
successful line of research. For instance, Ijspeert et al. [2]
and Peters et al. [8] have developed a series of powerful
learning methods that optimize parameterized motion prim-
itives to achieve various motor skills. Examples for motion
primitive parameterizations are using linear combinations of
basis functions to specify a feedback regulator [8], or via a

reference trajectory like in Dynamic Motion Primitives [2].
Our work applies motion primitive optimization for a specific
high-level objective function, namely that the generated
motions should generate most likely the symbolic effects
of learned symbolic rules. A further, technical difference to
most previous work on motion primitive optimization is that
we define motion primitives indirectly as the result of a (fast)
local motion planner. The reason for this is that we take hand-
tuned trajectory cost functions and task spaces for grasping
and placing as starting point for our approach, ensuring the
same type of generalization to novel situations (e.g. obstacle
configurations) and optimality of the generated motion. But
the approach could also be applied on other types of motion
primitive parameterizations.

Learning on the symbolic level in the context of robotic
manipulation tasks is still a great challenge. Generally,
previous work on relational Reinforcement Learning always
presumed a given set of symbolic actions [9]. Our work
specifically builds on the method of [10] to learn proba-
bilistic relational rules from symbolic data. However, to our
knowledge this is the first work trying to consider optimizing
the grounding of actions in relational RL as robot motion
primitives.

III. BACKGROUND

A. Learning relational rules

In this paper we will optimize motion primitives essen-
tially to become “consistent” with learned symbolic prob-
abilistic rules. Consistency means that the symbolic effect
predicted most likely by this rule should be made as likely
as possible by the corresponding motion primitive. The sym-
bolic probabilistic rules we consider are noisy indeterministic
deictic (NID) rules [10]. Generally, a NID rule is given as

action(X) : context(X) →


p1 : outcome1(X)

...
pm : outcomem(X)
p0 : noise

which states that a certain action, applied on a set of objects
X (formally a set of logic variables) in a certain context
can have m different outcomes, each with probability pm
– or lead to a special outcome, the so-called noise, which
includes rare and overly complex outcomes typical for noisy
domains, which are not covered explicitly for compactness
and generalization reasons. The context and outcomes are
described as conjunctions of predicates of the objects X . The
formal details of such relational rules are not relevant for the
remainder of this paper. Relevant here is that, given a set of
symbolic actions and their respective motion primitives, we
can sample concrete experience D = {(st, at, st+1)}t, where
st, st+1 are propositional state descriptions before and after
the application of an action at.

Clearly, the symbolic data D depends on the implementa-
tion of the motion primitives which influence the probabili-
ties of effects. This is where our work contributes: We aim
to optimize the motion primitives such that the rules learned
from the new data D will be more predictive (less entropic).

B. Motion Planning

We will later define motion primitives as the result of
a standard motion planner. Any motion planner that can
address the following problem formulation can in principle
be used. Let xt be the state of the system at time step
t—we will always consider the dynamic case where xt =
(qt, q̇t) ∈ Rn with qt being the robot joint angles at time
step t. Consider the problem of minimizing (the expectation
of) the cost

C(x0:T , u0:T) =

T∑
t=0

cx(xt) + cu(ut) (1)

where cu describes costs for the control and cx describes task
costs depending on the state. For our purposes we assume
that the task costs are of the form cx(xt) = Φt(xt)

>Φt(xt)
(lending to efficient Gauss-Newton type methods) where we
can efficiently evaluate the task vector Φt(x) ∈ Rm as well
as its Jacobian Jt(x) = ∂

∂xΦ(x) for any state x.
Any motion optimizer can be employed. We used the Ap-

proximate Inference Control framework, which translates this
cost function to a graphical model and employed Gaussian
message passing to find a MAP trajectory [11], which is very
similar to differential dynamic programming [12] or iLQG
[13].

IV. OPTIMIZING MOTION PRIMITIVES

A. Parameterization of motion primitives

In our approach, different motion primitives correspond
to different cost functions C(x0:T , u0:T): grasping has its
cost function, placing has another. Motion primitives are
generated as the result of the motion planner, which com-
prises both, the optimal trajectory as well as the local linear
quadratic regulator around this reference trajectory (which
the above mentioned methods return or can easily be com-
puted using the Riccati equation and the local linearization
J around the optimal trajectory).

When we want to optimize a motion primitive for a desired
effect we therefore need to optimize its corresponding cost
function C. That is, we parameterize this cost function
and optimize these parameters w.r.t. a higher-level objective
function which we describe in the next section.

We parameterize the cost function using task variables and
weights as follows. The task vector will be composed of
multiple task variables φi,

Φt(x) =



√
ρ1 (φ1(x)− y?1,t)√
ρ2 (φ2(x)− y?2,t)

...


(2)

where each φi : Rn → Rmi describes a task variable.
For example, to control the position of the endeffector we
can define a task variable “reach target” which consists of
a mapping φi given by the forward kinematics. Each task
variable is accompanied by a task target y?i,t which describes
the goal of the task at each time step t. In the case of
the “reach target”, the task target is the desired position of
the endeffector. Eventually, every variable is weighted by a

parameter ρi,t, which defines its precision (inverse variance)
at each time step t. Tuning the targets y?i,t and precisions
ρi,t allows us to flexible generate motions that blend various
tasks as required.

The space of possible cost functions (and motion prim-
itives) is therefore spanned by the space of possible task
variables, its targets y?i,t and precisions ρi,t—a specific mo-
tion primitive is defined as the tuple P = (φi, y

?
i,t, ρi,t)

m
i=1.

Note that precision parameters and targets are allowed to
change over time – this provides additional flexibility, e.g.
for defining in-between targets, which are only important at
a specific timeframe.

In the following we will assume only the precision ρi,t
are subject to optimization. Optimizing the task mappings
φi themselves is beyond the scope of the current paper
and would imply to find new task spaces. (A conceivable
approach would be to select from a very large variety of
potentially task spaces, similar to feature selection.) The kind
of task spaces we use are straight-forward: they include grasp
center’s position, the distance of finger tips to the object, a
measure for the opposedness of fingers, as well as standard
collision and limit avoidance task spaces. We also assume the
targets y?i,t to be predefined. Extending our optimization to
include them would be straight-forward. However, for the
specific task spaces we considered, the targets are rather
obvious: e.g. aligning the grasp center with the object center,
keeping collisions and limit cost to zero, etc.

B. Objective function
The motion primitives (i.e. the respective ρi,t) are opti-

mized w.r.t. a higher-level objective function which evaluated
whether the resulting motions really generate the symbolic
effect that is predicted by learned NID rules. The prediction
of a NID rule is the outcome with the highest probability. For
example, assume that, using initially non-optimized motion
primitives, we collected experience D = {(st, at, st+1)}t
here st, st+1, at are state and action symbols. From this
experience the NID rule learner will learn probabilistic rules,
for instance one for grasping:

grasp(X) : on(X,Y),cylinder(X),table(Y)

→

{
0.3 : inhand(X),¬on(X,Y)

0.7 : noise

(3)

where we summarized all outcomes as noise, except the
one with the highest probability – this is the desired outcome,
which is considered as a success by the symbolic planner.
The rule therefore expresses that only with 30% probability
the grasping primitive was successful. Once we have learned
this rule we can re-train the grasping primitive (optimizing
the respective ρi,t) to increase the probability of the outcome
inhand(X) ∧ ¬on(X,Y).

More precisely, based on the learned rules we define the
higher level objective function of a motion primitive as
follows. We choose a fixed training set S = {s1, .., sK}
of scenarios, where si describes the full geometric state of a
training scenario, that is, the pose of all objects and the initial
robot. For each training scenario we invoke the motion plan-
ner M and obtain K trajectories x̄1:K . For each trajectory

Algorithm 1 Fitness function for motion primitive Pi

function FITNESS(Pi)
x1:K ←M(S1:K ,Pi) //evaluate Pi on S1:K

γ ← 1

K

K∑
k=1

g(xk) //average costs of trajectories

return γ
end function

x̄k we compute a number of indicators of its quality, namely
1) the success w.r.t. achieving the symbolic outcome of the
respective rule, 2) whether the minimum collision distance
throughout the trajectory is below a margin, 3) whether the
minimum joint limit distance throughout the trajectory is
below a margin, 4) the euclidean length of the trajectory, 5)
the number of iterations needed by the motion planner. All
these criteria are combined to define the average performance
g(x̄k) of a motion primitive on the training scenario set.

Note, to evaluate whether an object really is inhand
after a motion primitive we instantiated the hand and object
pose within the physical simulator, jiggled at the hand with
a Brownian motion, and empirically observed whether the
object fell out of hand. This seemed much more realistic
than evaluating force closure or alike. Further, to evaluate
whether an object really is on after a motion primitive, we
measured the vertical displacement of their centers.

To formalize the above discussion, we define the objective
function as

P? = arg max
P

γ(P) (4)

whereby γ constitutes the outcome of a fitness function,
as displayed in algorithm 1. To find the best precisions ρi,t
to obtain P?, we used a stochastic optimization method [14]
to maximize it.

As a theoretical note, one might ask “When we’ve defined
a higher-level objective function for the motion, why do
we not optimize it directly with a motion planner and
instead use it to optimize the parameters of a cost function
C that is passed on to the motion planner?” The clear
answer is that the criteria of the higher-level objective are
not in the form (1) with time-slice-wise and differentiable
task costs which can efficiently be optimized. Instead the
higher-level objectives are global properties of the trajectory
and/or non-differentiable. In constrast, the specific form of
our cost function, based on semantic task variables (like
relative endeffector positions), ensures that we incorporate
our expertise on what might be relevant task variables, that
we generalize well, and that we can optimize them efficiently
(during online execution).

C. Iterative rule learning and motion primitive optimization

Once we have re-trained motion primitives they will of
course lead to different statistics on the symbolic effects of
actions. Therefore, using the new primitives we can collect
new symbolic data and relearn the rules. In our experiments
we will show how the outcome probabilities of the learnt
rules change due to the optimization of the motion primitives.

V. EXPERIMENTS

In this section we will demonstrate that our method
can indeed lead to motion primitives that make symbolic
state transitions more deterministic. We consider two sym-
bolic actions, GraspCylinder and PlaceCylinder. Using non-
optimized, manually tuned motion primitives to collect sym-
bolic data we can learn corresponding NID rules for each
action. We simplified each rule by assuming that all un-
desired outcomes are noise, and that there is one desired
outcome probability, which we will call the success rate. To
increase this succes rate, we optimize with respect to the
motion primitive parameters ρ.

We conduct for each symbolic action two experiments,
one reporting on the optimization on a set of training
scenarios, the second reporting on the generalization of the
learned motion primitive parameters on test scenarios. We
constrained the range of the parameters ρi,t to the rather
large interval [10−3, 109] – reflecting our experience from
manual tuning that precision parameters may differ by orders
of magnitude. To facilitate optimization we transformed the
parameters ρ to a logarithmic scale, ensuring better covering
of this wide interval of possible precisions.

Concerning the stochastic optimization algorithm we
tested both, CMA as well as a basic a monte carlo (MC)
sampling technique, which simply samples a parameter vec-
tor α at random from the domain. We conducted each exper-
iment on a simulated robotics platform, using the libraries
Open Dynamics Engine (ODE)1 for physical simulations and
SWIFT++2 for proximity measurements. Furthermore, we
used the SHARK3 library for the CMA stochastic optimiza-
tion algorithm.

A. The grasping action

a) Optimization: The symbolic grasping action will be
optimized on a set S of 6 different training scenarios. In each
scenario, the robot has to grasp a purple cylinder, as depicted
in Figure 1. The choice of those scenarios was motivated
by situations, which were difficult to perform with the non-
optimized motion primitives. The optimization algorithms
start with a set ρ of random parameters and optimize them
until a total of 2000 evaluations are performed. Because we
do not have any guarantee on convergence to the global
optimum we restart the optimization procedure 10 times.

The optimization process and variance over the optimiza-
tion restarts can be seen in Figure 2. It shows in the upper
graph the success rate pgrasp, for CMA and Monte Carlo.
CMA slightly outperforms plain Monte Carlo optimization,
leading more robustly to parameters with maximal success
rate in all optimization restarts. The lower graph additionally
shows the objective function γ during optimization.

b) Generalization: We also want to evaluate whether
the optimized motion primitives significantly improve the
success rate on previously unseen test scenarios. We gen-
erate random test scenarios by adding uniform noise to the

1http://www.ode.org/
2http://gamma.cs.unc.edu/SWIFT++/
3http://sourceforge.net/projects/shark-project/

(a) One fixed scenario. (b) The grasping trajectories for one
scenario: solid red line for the op-
timized parameters, dashed blue for
the manually specified ones.

Fig. 1. The grasping experiment.

TABLE I
OBTAINED NID RULES FOR THE SYMBOLIC GRASPING ACTION.

Noise Symbolic NID Rule
P P?

0 GraspCylinder(X):
on(X,Y),
cylinder(X), table(Y)

→

0.3 inhand(X),
¬on(X,Y)

0.7 noise

GraspCylinder(X):
on(X,Y),
cylinder(X), table(Y)

→

1.0 inhand(X),
¬on(X,Y)

0.0 noise

1.5 GraspCylinder(X):
on(X,Y),
cylinder(X), table(Y)

→

0.3 inhand(X),
¬on(X,Y)

0.7 noise

GraspCylinder(X):
on(X,Y),
cylinder(X), table(Y)

→

0.94 inhand(X),
¬on(X,Y)

0.06 noise

position of each object in each of the 6 test scenarios.
During this generation of random test scenarios, we rejected
configurations where objects touch each other or where
objects fall from the table. Since the computational cost for
testing are low, we generated a total of 1200 test scenarios
for each noise level in {0, 1, 2, 3, 4, 5}, which denote the
centimeters of random displacement of the object positions.
With increased noise, the test scenarios deviate more from
the training scenarios, as shown in Figure 3. If we start
with zero noise, the best ρ parameters reach a success
rate of pgrasp = 1.0. Moving away from the training data
decreases the performance of our optimized parameters, but
they remain nevertheless significantly better than the non-
optimized ones, and thus show the ability to generalize.
The dashed blue line indicates the success rate of the non-
optimized parameters on random scenarios (this is a baseline,
generated by testing 1200 scenarios at high-noise level). The
obtained pgrasp outcome probabilities translate directly to
the new NID rules for the optimized motion primitives, as
depicted for two noise levels in Table I. The left column
shows the outcome for high noise levels of the non-optimized
motion primitive, which have a lower performance compared
to the optimized primitives, shown in the right column.

Optimizing success rate of symbolic action 'graspCylinder'

 0
 0.2
 0.4
 0.6
 0.8

 1

Su
cc

es
s

R
at

e

CMA (1+40)
Monte Carlo Sampling

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
am

m
a

V
al

ue

Evaluations

Fig. 2. Success rate and γ for the grasping experiment, fixed scenario set.

Generalization of sgrasp

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Su
cc

es
s
R
at

e
s g

ra
sp

Uniform Noise (cm)

Fig. 3. Success rate for the grasping experiment, noisy test scenario set.
Comparison between non optimized P (blue,dashed) and P? (red,solid).

B. The Placing Action

c) Optimization: The second symbolic action which
we optimized is the PlaceCylinder action. Likewise to the
GraspCylinder action, we used K = 6 test scenarios
for optimization. The start configurations for one of the
test scenarios can be seen in Figure 4. They are similar
to the GraspCylinder action, but with a different starting
configuration, where the hand of the robot is grasping the
purple cylinder. The goal of each scenario is to place
the purple cylinder onto the green cylinder. Similar to the
GraspCylinder action, we optimized the parameters by using
CMA and MC sampling. Figure 5 shows the optimization
process for both methods. Each function represents the
average over 10 restarts, together with its mean estimator.
The final trajectories, obtained by using the best optimized
α parameters from CMA and the manually specified ones,
are shown exemplarily in Figure 4(b).

d) Generalization: We again performed an experiment,
which demonstrates how the optimized parameters for Place-

(a) One fixed scenario. (b) The place trajectories for one sce-
nario: solid red line for the optimized
parameters, dashed blue for the man-
ually specified ones.

Fig. 4. The placing experiment.

Optimizing success rate of symbolic action 'placeCylinder'

 0
 0.2
 0.4
 0.6
 0.8

 1

Su
cc

es
s

R
at

e

CMA (1+40)
Monte Carlo Sampling

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

G
am

m
a

V
al

ue

Evaluations

Fig. 5. Success rate and γ for the placing experiment, fixed scenario set.

Cylinder generalize to unseen scenarios. Figure 6 shows the
performance of the success rate , if we add different uniform
noise to the position of the objects. Each datapoint is ob-
tained by using the average over 1200 scenario evaluations.
The optimized parameters again retain a good generalization
ability on test scenarios different to the training scenarios.
Table II shows the corresponding NID rules, obtained at two
different noise levels.

VI. CONCLUSIONS

In this paper we considered motion primitive optimization
with the objective to increase the predictability of the corre-
sponding symbolic rules. Generally this means to optimize
the primitives to maximize the probability of the desired
symbolic state transition—for instance, in our demonstra-
tions the grasp motion primitive was trained to ensure the
symbolic prediction of inhand(X), as was the place motion
primitive trained to fulfil the prediction of on(X,Y). Closing
the loop, the optimized motion primitives imply, when used
to continue exploration of the environment, new statistics of

Generalization of splace

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Su
cc

es
s

R
at

e
s p

la
ce

Uniform Noise (cm)

Fig. 6. Success rate for the placing experiment, noisy test scenario set.

TABLE II
COMPARISON OF THE AVERAGE STATE TRANSITION PROBABILITY OF

THE PlaceCylinder ACTION. IN EACH ROW, A DIFFERENT LEVEL OF

UNIFORM NOISE IS ADDED TO THE STARTING SCENARIOS, ON WHICH WE

OPTIMIZED P .

Noise Symbolic NID Rules
P?

0 PlaceCylinder(X,Y): inhand(X), on(Y,Z), table(Z),
cylinder(X)

→
{

1.0 on(X,Y),¬inhand(X)

0.0 noise

1.5 PlaceCylinder(X,Y): inhand(X), on(Y,Z), table(Z),
cylinder(X)

→
{

0.92 on(X,Y),¬inhand(X)

0.08 noise

the symbolic data and thereby new symbolic rules.
With this approach we generally aimed to reciprocally

couple motion planning on the motor level with action
planning on the symbolic level. We believe that such a tighter
integration is necessary for robots to eventually solve com-
plex manipulation tasks more robustly. Equally we generally
aimed to provide a new perspective on how the existing
powerful methods for motion primitive optimization can be
integrated in larger systems for complex sequential manipula-
tion: We essentially proposed to use learned symbolic rules
instead of a predetermined task specifications to imply an
objective function for the motion primitives.

In our specific approach we considered motion primitives
generated via a planner, mostly since this is a natural exten-
sion of hand-tuned planning cost functions for each subtask
and ensures a strong generalization to novel situations (e.g.
obstacle configurations) and optimality of the generated
motion. However, future reserach should investigate the full
range of alternative parameterizations of motion primitives,
perhaps including the possibility to parameterize and opti-
mize the task spaces themselves.

Concerning limitations, in the presented experiments each
motion primitive has only been optimized on 6 training
scenarios. While we demonstrated reasonable performance,

6 training scenarios are not enough to robustly cover the
full space and prevent overfitting. Ideally the system should
use each new encountered situation in an online manner to
readjust the motion primitives—this would imply a system
that directly learns from a failure to produce the desired
effect instead of the batch learning approach presented above.

Further, the considered grasp and place primitives lend to
rather simple rules. While their success probabilities change
with the motion quality, their structure (which predicates are
involved) remains invariant. In this case, continued iteration
of motion primitive optimization and rule re-learning has
no effect after one iteration. In the future we would like to
investigate more complex scenarios and motion primitives,
where the structure of the rule set really changes with the
optimization of the motion primitives, demonstrating the full
power of coupling learning on both levels.

REFERENCES

[1] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011, pp. 1470–1477.

[2] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning rhythmic move-
ments by demonstration using nonlinear oscillators,” in In Proceedings
of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems
(IROS2002), 2002, pp. 958–963.

[3] T. Lang and M. Toussaint, “Planning with noisy probabilistic relational
rules,” Journal of Artificial Intelligence Research, vol. 39, pp. 1–49,
2010.

[4] T. Lang, “Planning and exploration in stochastic relational worlds,”
Ph.D. dissertation, Fachbereich Mathematik und Informatik, Freie
Universität Berlin, 2011.

[5] T. Rühr, J. Sturm, D. Pangercic, D. Cremers, and M. Beetz, “A
generalized framework for opening doors and drawers in kitchen
environments,” in IEEE International Conference on Robotics and
Automation (ICRA), St. Paul, MN, USA, May 14–18 2012.

[6] M. Beetz, F. Stulp, B. Radig, J. Bandouch, N. Blodow, M. Dolha,
A. Fedrizzi, D. Jain, U. Klank, I. Kresse, A. Maldonado, Z. Marton,
L. Mösenlechner, F. Ruiz, R. B. Rusu, and M. Tenorth, “The Assistive
Kitchen – A Demonstration Scenario for Cognitive Technical Sys-
tems,” in IEEE 17th International Symposium on Robot and Human
Interactive Communication (RO-MAN), Muenchen, Germany, 2008,
pp. 1–8, invited paper.

[7] T. Asfour, K. Regenstein, P. Azad, J. Schrder, N. Vahrenkamp, and
R. Dillmann, “Armar-iii: An integrated humanoid platform for sensory-
motor control,” in IEEE/RAS International Conference on Humanoid
Robots (Humanoids), 2006, pp. 169–175.

[8] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
in Advances in Neural Information Processing Systems 21, D. Koller,
D. Schuurmans, and Y. Bengio, Eds. Cambridge, MA: MIT Press,
2009.

[9] S. Džeroski, L. de Raedt, and K. Driessens, “Relational reinforcement
learning,” Machine Learning Journal, vol. 43, pp. 7–52, 2001.

[10] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research (JAIR), vol. 29, pp. 309–352, 2007.

[11] M. Toussaint, “Robot trajectory optimization using approximate
inference,” in Proceedings of the 26th Annual International
Conference on Machine Learning, ser. ICML ’09. New York,
NY, USA: ACM, 2009, pp. 1049–1056. [Online]. Available:
http://doi.acm.org/10.1145/1553374.1553508

[12] D. M. Murray and S. J. Yakowitz, “Differential dynamic programming
and Newtons method for discrete optimal control problems,” Journal
of Optimization Theory and Applications, vol. 43, pp. 395–414, 1984.

[13] W. Li and E. Todorov, “An iterative optimal control and estimation
design for nonlinear stochastic system,” in Proc. of the 45th IEEE
Conference on Decision and Control. San Diego, CA, USA: IEEE,
2006, pp. 3242–3247.

[14] N. Hansen and S. Kern, “Evaluating the CMA evolution strategy on
multimodal test functions,” in Parallel Problem Solving from Nature
PPSN VIII, ser. LNCS, X. Yao et al., Eds., vol. 3242. Springer, 2004,
pp. 282–291.

http://doi.acm.org/10.1145/1553374.1553508

	Introduction
	Related Work
	Background
	Learning relational rules
	Motion Planning

	Optimizing motion primitives
	Parameterization of motion primitives
	Objective function
	Iterative rule learning and motion primitive optimization

	Experiments
	The grasping action
	The Placing Action

	Conclusions
	References

