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Abstract— A motion planning algorithm computes the motion
of a robot by computing a path through its configuration space.
To improve the runtime of motion planning algorithms, we
propose to nest robots in each other, creating a nested quotient-
space decomposition of the configuration space. Based on this
decomposition we define a new roadmap-based motion planning
algorithm called the Quotient-space roadMap Planner (QMP).
The algorithm starts growing a graph on the lowest dimensional
quotient space, switches to the next quotient space once a
valid path has been found, and keeps updating the graphs
on each quotient space simultaneously until a valid path in
the configuration space has been found. We show that this
algorithm is probabilistically complete and outperforms a set
of state-of-the-art algorithms implemented in the open motion
planning library (OMPL).

I. INTRODUCTION

Motion planning algorithms are fundamental for robotic
applications like product assembly, manufacturing, disaster
response, elderly care or space exploration.

A motion planning algorithm takes as input a robot, its
configuration space, an environment, a start and a goal
configuration, and computes as output a path between start
and goal if one exists [1]. This computation is NP-hard
[2] scaling exponentially with the number of dimensions of
the configuration space. Thus, the more degrees-of-freedom
(dof) a robot has, the higher the runtime of the motion
planning algorithm will be. This can become the limiting
factor of any robotics application. It is therefore important to
find suitable decompositions of the configuration space, such
that a planning algorithm can quickly discover the relevant
parts of the configuration space.

We developed a new decomposition of a given configu-
ration space M, which decomposes M into a sequence of
nested subspaces. We observe that any configuration space
M can be written as a product of subspaces

M =M1 × · · · ×MK (1)

This suggests we can decompose the configuration space in
the following way: Start with the product of subspaces and
successively remove one subspace after another. This leads
to a sequence of nested subspaces as

M1 ⊂M1 ×M2 ⊂ · · · ⊂ M1 × · · · ×MK (2)

Each subspace in this sequence is called a quotient-space,
and the sequence itself is called a quotient-space decompo-
sition [3].
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It turns out that each quotient-space can be represented
by nesting a simpler robot inside the original robot. The
prototypical example is a rigid body free-floating in space.
The configuration space is SE(3) = R3 × SO(3), and we
can decompose it as R3 ⊂ R3 × SO(3). The subspace R3

is called the quotient-space and represents a sphere nested
inside the rigid body, abstracting the orientations of the rigid
body.

Such a decomposition is advantageous: Imagine the sphere
being infeasible at point p ∈ R3. Then the rigid body is
infeasible at all configurations inside the subspace p×SO(3).
We call this the necessary condition of nested robots.

We have developed a new algorithm, called the Quotient-
space roadMap Planner (QMP), which is able to exploit such
a quotient-space decomposition. We first show how to build
a quotient-space decomposition for any robot in Sec. III. We
then discuss the inner workings of QMP in Sec. IV, prove that
QMP is probabilistically complete (Sec. V), and we develop
three heuristics to improve its runtime (Sec. VI). Finally,
we demonstrate that QMP (Sec. VII) can be applied to free-
floating rigid bodies, free-floating articulated bodies, fixed-
base serial chains and fixed-base tree chain robots.

II. RELATED WORK

We review two categories of papers. First, we review
quotient-space decompositions and their application to mo-
tion planning. Second, we review alternative decomposition
methods.

Quotient-space decompositions are ubiquitous in mathe-
matics, appearing as quotient-groups in algebra, filtrations
in linear algebra, or nests in functional analysis. The con-
struction of simplicial complexes in algebraic topology is a
prominent example of a quotient-space decomposition.

The application of quotient spaces to continuous spaces
and decision making has been originally developed by [4]
and [5]. In robotics, quotient-spaces have been used, albeit
under different names. Bretl proposed a two-level decom-
position: first a path on a stance graph is planned and then
configurations along the path are sampled [6]. The stance
graph can be seen as a quotient space of the configuration
space by the stance subspaces. Grey et al. [7] use a two-
level quotient space decompositions, embedding the torso
inside a humanoid robot. A similar idea can be found in
Tonneau et al.[8], approximating a robot by a simpler model.
Both methods are similar to ours, but use only a two-level
decomposition, and do not define the nesting procedure for
general robots.

The closest approach to ours is the multi-level decompo-
sition scheme by [9] whereby a sequence of nested robots is
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created. Their planning algorithm starts with the lowest dof
robot, computes a path, and uses this path as a constraint for
the next bigger robot. This approach can neither deal with
non-simple paths (see Fig. 4), nor with spurious paths (see
Fig. 5, Sec. VI). It is thus not complete.

Closely related is the exploration/exploitation tree (EET)
algorithm [10]. The authors compute a sequence of spheres
in the workspace, called a tunnel, to approximate the space of
collision-free paths. However, this method is not complete,
and cannot handle spurious shortest tunnels/paths (see Sec.
VI).

The motion planning problem can also be decomposed
without using quotient-spaces.

Kunz et al. [11] use a hierarchical rejection sampling
approach to improve the Informed-RRT* algorithm [12].
While the focus is different from ours, their method is
methodically similar to our algorithm, where samples are
discarded if they are not necessary feasible.

Our work is closely related to low-dimensional sampling
techniques which guide configuration space sampling. The
algorithm by van den Berg and Overmars [13] precomputes
narrow passages of the workspace and uses thoses passages
to sample the space more densely in those areas. A similar
idea can be found in [14], where the authors discretize
the workspace, compute a shortest path in the workspace
between start and goal configuration, and then sample from
a cell in workspace in proportion to the cell’s distance to
the shortest path. Closely related is also the dimensionality
reduction method by [15], which considers ignoring paths
not having a minimal swept volume.

The KPIECE algorithm [16] is another example of a
hierarchical decomposition. The environment is divided into
smaller and smaller boxes until a certain threshold is reached.
A small box corresponds to workspace points near to a
boundary. Those areas are sampled more frequently to effec-
tively guide samples towards the configuration space bound-
ary. This algorithm is orthogonal to ours: they decompose
the environment, we decompose the robot.

III. QUOTIENT-SPACE DECOMPOSITION

First, we describe the idea of a quotient space and show
two applications to the vector space R2 and the manifold
SO(2)2. Second, we show how robots can be nested in each
other and thereby create a sequence of quotient spaces. Third,
we show that being feasible in a quotient space is a necessary
condition for being feasible in the configuration space.

A. Quotient Space

Let M be a vector space and C be a subspace of M .
Then the quotient space of M by C, denoted by M /C
is the space obtained by collapsing all equivalence classes
of C in M to zero [3]. Collapsing a space is done by
creating an equivalence relation ∼ on M : for all x, y ∈ M
we have that x ∼ y if x − y ∈ C. This relation creates a
partition of equivalence classes on the vector space. The set
of equivalence classes is called the quotient space.
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Fig. 1. Visualization of Quotient Space as collapsing of equivalence classes.

M1 = SO(2)× SO(2) M0 =M1

/
SO(2)

Fig. 2. Quotient Space Decomposition for a 2-dof manipulator. Left
Top: Environment with four obstacles. We have visualized three distinct
configurations of the robot. Left Bottom: The configuration space with gray
areas being infeasible configurations. Right Top: Environment with 1-dof
nested manipulator at same configurations. Right Bottom: Configuration
space is collapsed onto the quotient space. Being feasible in the quotient
space is a necessary condition for feasibility in the configuration space. It
can be seen that q3 is infeasible, thus not fulfilling the necessary condition.

As an example, consider the vector space R2 and its
subspace R. We can partition R2 into equivalence classes of
its subspace R such that two points x, y ∈ R2 are equivalent
if x − y ∈ 0 × R. We visualize this in Fig. 1, where R2 is
first partitioned into the equivalence classes of R (the vertical
lines), and then all lines are collapsed to yield R. The point
q2 ∈ R2 and all points on the dashed line are equivalent and
therefore collapsed into the single point q1 ∈ R. We identify
R = R2

/R to denote the quotient space.
Quotient spaces generalize to manifolds [17]. Consider

M = SO(2) × SO(2), the configuration space of a 2-dof
fixed-base manipulator in the plane. Two points x, y ∈ SO(2)
are equivalent if x − y ∈ 0 × SO(2). The manifold M
can be partitioned into equivalence classes of SO(2), and
then each equivalent class is collapsed to yield SO(2) =
M

/
SO(2) . This has been visualized in Fig. 2. On the left



three different configurations are shown and their position in
the configuration space. On the right the quotient space is
shown, corresponding to a 1-dof manipulator nested inside
the 2-dof manipulator. Two interesting observations can be
made in the quotient space: First, the configuration q3 is
infeasible, regardless of how the second joint is moved.
Second, there does not exists a path between q1 and q2.
This can be inferred solely from the 1-dof manipulators
configuration space.

This example shows the defining feature of quotient
spaces: If a robot is nested inside another robot, then the
feasibility of the nested robot is a necessary condition for
the feasibility of the other robot1. We will proceed to define
how robots can be nested in each other, and we will show
that this definition indeed leads to the necessary condition
for feasibility.

B. Nesting of Robots

A robot Ri is nested inside another robot Ri+1 if two
conditions are fulfilled: First, the configuration space of Ri

is a subspace of Ri+1, and second, the volume of the body
of Ri at each configuration must be a subset of the volume
of the body of Ri+1.

Let Mi be the configuration space of robot Ri, and let
Vi(p) ⊂ R3 be the volume of the body of robot Ri at
configuration p ∈Mi.

Definition 1 (Nested Robot). Let Ri,Ri+1 be given. We say
that Ri is nested in Ri+1, denoted as Ri ⊆ Ri+1, if

(1) Mi+1 =Mi ×Ci+1 such that Mi =Mi+1

/
Ci+1

(2) Vi(p) ⊆ Vi+1(p ◦ q) for any p ∈Mi and q ∈ Ci+1

whereby the operation ◦ is the cartesian product defined
as p ◦ q = (p, q) ∈Mi+1.

Given a robot R and a sequence of nested robots R1 ⊆
· · · ⊆ RK = R, the configuration spaces define a decompo-
sition of M as

M1 ⊆ · · · ⊆ MK (3)

This decomposition will be called a quotient-space decom-
position.

C. Necessary Conditions

From Definition 1 we can infer the key property of the
quotient-space decomposition: if a nested robot is infeasible,
then so is the original robot.

Let E denote the environment, the subset of R3 containing
obstacles. We say that robot Ri is feasible at configuration
q ∈Mi if Vi(q) ∩E = ∅.

Theorem 1 (Necessary condition of nested robot). If Ri ⊆
Ri+1, p ∈ Mi, and Vi(p) ∩ E 6= ∅ (robot Ri is infeasible
at p), then Vi+1(p ◦ q) ∩ E 6= ∅ for any q ∈ Ci+1 (robot
Ri+1 is infeasible everywhere).

Proof. Since Vi(p) ∩ E 6= ∅ and Vi(p) ⊆ Vi+1(p ◦ q) for
any q ∈ Ci+1, it must follow that Vi+1(p ◦ q)∩E 6= ∅.

1Zhang and Zhang [4] call this the falseness-preserving property of
quotient space decompositions

Fig. 3. Schematic of QMP for a two-level decomposition. See text for
clarification.

Theorem 1 implies that if a configuration p ∈ Mi is
infeasible, then so is the subspace p×Ci+1. We can exploit
this fact to ignore subspaces of the configuration space,
thereby developing a motion planning algorithm with lower
runtime.

IV. QUOTIENT-SPACE ROADMAP PLANNER

The Quotient-Space roadMap Planner (QMP) works as
depicted in Fig. 3. On the top right the configuration space
of the 2-dof fixed-base manipulator is shown with a start
configuration (green) and a goal configuration (red). The
corresponding start and goal configurations on the quotient-
space are shown in the top left figure. In the first step, a graph
is grown on the quotient space (middle left). Once a valid
path has been found between start and goal configuration, a
second graph is grown on the configuration space (middle
right), whereby the samples are constrained to lie above
the quotient-space graph. Both graphs are simultaneously
grown (bottom left), until a valid path has been found on
the configuration space (bottom right), or until a time limit
has been reached. For more than two quotient-spaces, this
idea is iteratively continued.

A. Quotient-Space Roadmap

To simplify the algorithmic development, we group each
quotient-space with its associated objects into a tuple called



the quotient-space roadmap.
LetM be the N -dimensional configuration space of robot

R. We consider a nested sequence of K robots R1 ⊂ · · · ⊂
RK = R, such that M is decomposed into a sequence of
quotient spaces as M1 ⊂ · · · ⊂ MK =M.

To each quotient space Mk we associate a start config-
uration qIk, a goal configuration qGk , a graph Gk, a shortest
path pk on Gk between qIk and qGk , and a density Vk defined
on Gk−1 ×Ck as

Vk =
|Gk|

µ(Ck)Lk−1
(4)

whereby |Gk| are the number of vertices of Gk, Lk−1 is
the sum of all edge lengths of Gk−1, and µ(Ck) is the nk-
dimensional measure of Ck. The density is used to decide
which graph should be grown next.

We group all elements together into the quotient-space
roadmap

Qk = {qIk, qGk ,Ck,Mk,Gk,pk, Vk,Qk−1} (5)

with Ck =Mk

/
Mk−1

, M0 = ∅, Q0 = ∅.

B. Algorithmic Development

QMP is an adapted version of the probabilistic roadmap
planner (PRM) for quotient space decompositions. We first
summarize the workings of PRM, then show how QMP can
be built from it.

A simplified version of PRM is depicted in Algorithm 1.
While a planner terminate condition (PTC) 2 has not been
reached (Line 2), the algorithm grows a graph G on the
configuration spaceM of robot R (Line 3). If there exists a
path on the graph between start and goal configuration (Line
4), then this path is returned (Line 5). If the PTC is reached
then PRM fails and returns an empty path.

The growing of the graph is depicted in Algorithm 2. A
configuration qrand is sampled from the configuration space
M (Line 1). If this configuration is valid (Line 2), then it is
added to the graph (Line 3) and the nearest R configurations
QR are searched (Line 4). The graph is extended in a straight
line from each qnear ∈ QR (Line 5) towards qrand until it
hits an obstacle (Line 6). The last configuration before the
obstacle becomes qnew, and the edge between qnear and qnew
is added to the graph (Line 7).
QMP is depicted in Algorithm 3. An empty priority queue

is constructed (Line 1), and the k-th quotient roadmap is
initialized (Line 3) and added to the queue (line 4). While
no path between start and goal has been found (Line 5),
we pop the quotient roadmap with the smallest density from
the queue (line 6), grow its graph (line 7) and push it back
onto the queue (line 8). Then we check if there exists a path
on the current quotient space (line 9); if yes, we construct
its solution (line 10), and we continue to the next quotient
roadmap. For k = 1 the algorithm is equivalent to PRM.
For k > 1, multiple quotient spaces are inside the queue,

2A planner terminate condition (PTC) has to be chosen by a user and can
be a time limit, an iterations limit, or a desired cost of the resulting path.

and depending on the density function we pop one quotient
space and grow its graph. The algorithm terminates if either
the path pK has been found, or if the PTC is reached, in
which case pK = ∅ is returned.

The growing of the quotient space graph is depicted in Al-
gorithm 5. Instead of samplingMk as in the PRM, we sample
instead Ck uniformly, and we pick one configuration from
the graph Gk−1 on Mk−1 (Line 1). The SampleGraph
samples a uniform vertex from the graph Gk−1. Then a ran-
dom incoming edge is chosen, and a configuration uniformly
on the edge is sampled. This is called Random-Vertex-Edge
(RVE) sampling [18]. The cartesian product ◦ merges the two
configuration to yield a configuration onMk. The rest of the
algorithm (line 2-7) operates as the PRM algorithm, with two
exceptions. First, the R-Nearest-Neighbors method measures
distance not by euclidean distance on Mk, but by the graph
distance on Gk−1 plus euclidean distance on Ck (Line 4).
Second, the Connect method does not interpolate along a
straight line, but interpolates along the edges of the graph
Gk−1, while interpolating on Ck using a straight line. For
each vertex crossed on Gk−1 we add another configuration.
The Connect method then returns a piece-wise linear (PL)
path on Mk. For each edge along this PL-path we add one
edge to the graph Gk (Line 7).

Interpolating along the graph instead of using a straight
line should be seen as a change in the metric onMk. While
a standard euclidean metric is agnostic about the graph on
Mk−1, our graph interpolation metric utilizes the knowledge
about Gk−1 to improve the metric computation.

Algorithm 1 PRM(qI , qG,M)[19]
1: INIT(G, qI )
2: while ¬PTC do
3: GROWPRM(G,M)
4: if ISCONNECTED(qI , qG,G) then
5: return PATH(qI , qG,G)
6: return ∅

Algorithm 2 GrowPRM(G,M)
1: qrand ← SAMPLE(M)
2: if ¬ISVALID(qrand) then return
3: ADD VERTEX(qrand,G)
4: QR ← R-NEARESTNEIGHBORS(qrand,G)
5: for qnear ∈ QR do
6: qnew ← CONNECT(qnear, qrand)
7: ADD EDGE(qnear, qnew,G)

C. Implementation Details

Our software uses the Klamp’t [20] physical simulator,
and the open motion planning library OMPL [21].

The nesting of robots has to be prespecified as a
set of Unified Robot Description Format (URDF) files
along with its subspaces. Each subspace is represented
by an OMPL space, and our algorithm iterates through



Algorithm 3 QMP(qI1,··· ,K , q
G
1,··· ,K ,M1,··· ,K)

1: Q← PRIORITY QUEUE
2: for k = 1 to K do
3: Qk = INIT(qIk, q

G
k ,Mk,Qk−1)

4: Q.PUSH(Qk)
5: while pk == ∅ and ¬PTC do
6: Qleast = Q.POP
7: GROWQMP(Qleast)
8: Q.PUSH(Qleast)
9: if ISCONNECTED(Qk) then

10: pk = PATH(qIk, q
G
k ,Qk)

11: return pK

Algorithm 4 Init(qIk, q
G
k ,Mk,Qk−1)

1: return {qIk, qGk ,Mk

/
Mk−1

,Mk, ∅, ∅, 0,Qk−1}

them computing the quotient spaces. We currently sup-
port the following quotient space computations: R3 =
SE(3)

/
SO(3) , R2 = SE(2)

/
SO(2) , Rn−m = Rn

/Rm ,

SE(3) = SE(3)× Rn
/Rn , and SE(3) × Rn−m =

SE(3)× Rn
/
SE(3)× Rm , with n,m ∈ N and n > m > 0.

Our algorithm terminates after a path has been found on
the configuration space, or a timelimit T has been reached.

V. PROBABILISTIC COMPLETENESS

A motion planning algorithm is probabilistically complete
if the probability that the algorithm will find a path if one
exists approaches one as the number of sampled points in-
creases. We will show that QMP is probabilistically complete
by alluring to the probabilistic completeness of PRM [22].

The main difference of QMP and the PRM on the configu-
ration space is the choice of a sampling sequence. For PRM
the sampling sequence is dense in the configuration space,
while it is not true for the sampling sequence generated by
QMP. However, we will show that the sampling sequence by
QMP is dense in the space of feasible configurations, thus
making QMP probabilistically complete.

LetM be the configuration space and U ⊆M be a subset.
We say that U is dense in M if cl(U) =M whereby cl is
the closure of U . Let α : N→M be a random sequence. We
say that the sequence α is dense inM if the set {αn, n ∈ N}
is dense in M [1].

Algorithm 5 GrowQMP(Qk)
1: qrand ← SAMPLEGRAPH(Gk−1) ◦ SAMPLE(Ck)
2: if ¬ISVALID(qrand) then return
3: ADD VERTEX(qrand,G)
4: QR ← R-NEARESTNEIGHBORS(qrand,Gk,Gk−1)
5: for qnear ∈ QR do
6: {qn1

, · · · , qnJ
} ← CONNECT(qnear, qrand,Gk−1)

7: ADD EDGES(qn1
, · · · , qnJ

,Gk)

Fig. 4. Non-simple path on Quotient-Space: See text for clarification.

Each quotient space M1, · · · ,MK uses a sampling se-
quence as α(k) : N→Mk. We will show that this sequence
is dense in M̃k = {q ∈ Mk|V(q) ∩ E = ∅}, the feasible
space of Mk.

Theorem 2. αK is dense in M̃K

Proof. By induction for K = 1 α(1) is dense in M1, and
since M̃1 ⊆ M1, α(1) is dense in M̃1. For K > 1, we
assume α(K−1) is dense in M̃K−1. Consider the sampling
domain of α(K), defined as S = {α(K−1)

n ×CK |α(K−1)
n ∈

M̃K−1, n ∈ N}. Due to the necessary condition of nested
robots (Theorem 1), we have that if r ◦ p ∈ M̃K then
r ∈ M̃K−1. Thus M̃K ⊆ S. Since α(K) is dense in S
by definition, α(K) is dense in M̃K .

Finally, we need to make sure that every α(k) is an infinite
sequence. This is only guaranteed if each quotient space from
the priority queue in Algorithm 3 is chosen infinitely many
times. A sufficient condition is to choose a density function
strictly monotonically increasing, as we did in Eq. 4.

VI. QUOTIENT-SPACE HEURISTICS

We first discuss intricacies of quotient-spaces, and then
use this knowledge to design heuristics for QMP.

A. Quotient-Space Intricacies

Solution paths on quotient-spaces do not behave as nicely
as one would expect. We show two examples where the
solution path is non-simple or spurious.

1) Non-simple Paths on Quotient-Space: A non-simple
path is a path with self-intersections. We say that a path
p : [0, 1] → M is simple, if it is injective, i.e. for any
t, s ∈ [0, 1]: if p(t) = p(s) then t = s [23]. A path not
being simple is called non-simple.

While non-simple paths do not occur in configuration
spaces, they can occur in quotient spaces. Fig. 4 shows an
example, where a rectangular shaped planar robot needs to
move from a start configuration (green) to a goal configura-
tion (red). The configuration space is SE(2) and the quotient
space is R2 = SE(2)

/
SO(2) , obtained by nesting a disk

inside the rectangle. The solution path is simple on SE(2),
but non-simple on R2.

2) Spurious Shortest Path on Quotient-Space: Spurious
paths are solution paths on the quotient-space which are
infeasible on the configuration space. Let M1 be a quotient
space of the configuration space M2 and let p1 : [0, 1] →
M1 be the shortest feasible path on the quotient space
between q1I and q1G. We say that p1 is feasible on the
configuration space, if there exists a feasible path p2 :



Fig. 5. Spurious shortest path in Quotient-Space: An environment for an
L-shaped robot with configuration space SE(2) and quotient space R2. See
text for clarification.

[0, 1] → p1 × C2. If p1 is infeasible on the configuration
space, we call it spurious.

Consider the example in Fig. 5, where an L-shaped robot
needs to move through an environment with two passages
above and below a rectangular obstacle (Left). The quotient-
space is represented by a disk nested in the L-shaped robot.
The shortest path on the quotient space is spurious (Middle),
since the only feasible path goes above the obstacle (Right).

B. Heuristics

Keeping the intricacies in mind, we design three heuristics
which we found to be beneficial to reduce the runtime of
QMP.

1) Diminishing-Time Shortest Path Sampling: If the short-
est path is spurious this often can be established quickly.
We add a diminishing time heuristic to sample first the
shortest path on the quotient-space with probability p = 0.8
and decrease this probability over time with the amount of
samples taken from the shortest path.

2) Graph Thickening: Often a solution path on the
quotient-space is spurious, but a solution path nearby is
not spurious and contains a solution on the configuration
space. To alleviate this problem, we introduce an ε-graph
thickening. Given a random sample q from the graph, we
add an offset uniformly distributed from a ball around q with
radius ε. This helps in finding nearby solutions. We have set
ε = 0.01 for free-floating robots and ε = 0.1 for fixed-base
robots.

3) Increasing Clearance: In some cases it is advantageous
to inflate the shape of the nested robot such that the clearance
of the solution path on the quotient space is increased.
One has to be careful with this heuristic, since it trades-
off completeness with efficiency. We apply this only for the
free-floating robots in our experiments by increasing the size
of the inscribed sphere by δ = 1.2.

VII. EXPERIMENTS

We perform experiments on four different environments
as shown in Fig. 8: A free-floating rigid body, a free-
floating articulated body, a fixed-base serial chain and a
fixed-base tree chain robot. The problem is to find a path for
each robot from the initial configuration (green) to the goal
configuration (red). All experiments have been perfomed on
a quad core 2.6 Ghz laptop with 31 GB working memory.
We perform collision detection using the proximity query
package (PQP) [24].

Fig. 6. Nesting of robots for the Double L-shape, Snake and KUKA LWR
with windshield. The darker shade is the nested robot.

Fig. 7. Nesting of robots for Baxter Robot by Rethinking Robotics.

A. Free-floating rigid body

The double L-shape is a rigid body consisting of two
L-shapes glued together. The environment is a wall with
a small square hole in it, as depicted in Fig. 8. This
problem was introduced by [13] as an example of a narrow
passage planning problem. We decompose the double L-
shape as R3 ⊂ SE(3), as depicted in Fig. 6. We compared
our algorithm QMP with three state of the art algorithms
implemented in the OMPL software framework: PRM [25],
bidirectional rapidly-exploring random tree (RRTConnect)
[26] and the expansive space trees planner (EST) [27]. Fig. 9
shows that only QMP and PRM solved all runs, and that QMP
has a median runtime of 2.5s, compared to 27s for PRM.

B. Free-floating articulated body

The mechanical snake is a 10-dof articulated body which
has three links, connected each by two revolute joints with
limits (See Fig. 6). The snake can freely translate and rotate
in space. We found the most effective decomposition to be
R3 ⊂ SE(3) × R4. QMP has a median runtime of 30s (67s
for EST). However, we can see that QMP has two outliers.

C. Fixed-base serial chain: KUKA LWR

The KUKA Ligthweight Robot (LWR) is a 7-dof manip-
ulator. We consider transporting a windshield through a fac-
tory simulating a car manufacturing task. Our decomposition
is R5 ⊂ R7. In the experiments, only QMP was able to solve
all runs, with a median time of 18s (164s for EST).

D. Fixed-base tree chain: Baxter

Baxter is a two-arm fixed-base robot with a tree kinematic
chain having two serial chains of 7 dof for each arm, and
having a total of 14 dof. We consider a maintenance task,
where Baxter needs to move its arms into small openings of
a defect water tank. We decompose Baxter as R5 ⊂ R7 ⊂
R12 ⊂ R14 as depicted in Fig. 7. Only QMP was able to
solve all runs, with a median runtime of 4.5s compared to
94s for RRTConnect.



Fig. 8. The four experiments considered in this paper: For each experiment
we show the start configuration of the robot (green) and the goal configura-
tion (red). The left column shows the faces of the environment mesh, while
the right column shows the edges of the environment mesh.

VIII. CONCLUSION

We have introduced the quotient-space decomposition, a
configuration space decomposition based on nested robots.
To exploit this decomposition we developed the Quotient-
space roadMap Planner (QMP). We showed that QMP is
probabilistically complete and that QMP has lower runtime
on four environments compared to state-of-the-art motion
planning algorithms implemented in the OMPL software.

We like to extend QMP in three directions. First, the
quotient-space decomposition of a configuration space is not
unique, and has to be specified by a human operator. We like
to investigate which decomposition is optimal, and automate

Fig. 9. Free-floating rigid body: Double L-Shape 6-dof benchmark.

Fig. 10. Free-floating articulated body: Mechanical Snake 10-dof bench-
mark.

its specification. Second, we like to generalize our approach
to closed kinematic chains, constraint manifolds, and dy-
namic constraints. Finally, we like to apply the quotient-
space decomposition to environments changing over time,
where a roadmap on the quotient space could improve fast
decision making.
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