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Section Patterns: Efficiently Solving Narrow
Passage Problems in Multilevel Motion Planning

Andreas Orthey1 and Marc Toussaint1,2

Abstract—Sampling-based planning methods often become in-
efficient due to narrow passages. Narrow passages induce a higher
runtime, because the chance to sample them becomes vanishingly
small. In recent work, we showed that narrow passages can be
approached by relaxing the problem using admissible lower-
dimensional projections of the state space. Those relaxations
often increase the volume of narrow passages under projection.
Solving the relaxed problem is often efficient and produces an
admissible heuristic we can exploit. However, given a base path,
i.e. a solution to a relaxed problem, there are currently no tailored
methods to efficiently exploit the base path. To efficiently exploit
the base path and thereby its admissible heuristic, we develop
section patterns, which are solution strategies to efficiently exploit
base paths in particular around narrow passages. To coordinate
section patterns, we develop the pattern dance algorithm, which
efficiently coordinates section patterns to reactively traverse
narrow passages. We combine the pattern dance algorithm
with previously developed multilevel planning algorithms and
benchmark them on challenging planning problems like the
Bugtrap, the double L-shape, an egress problem and on four
pregrasp scenarios for a 37 degrees of freedom shadow hand
mounted on a KUKA LWR robot. Our results confirm that
section patterns are useful to efficiently solve high-dimensional
narrow passage motion planning problems.

I. INTRODUCTION

Sampling-based motion planning algorithms are a suc-
cessful paradigm to automate robotic tasks [52]. However,
sampling-based algorithms do not perform well when the state
space of the robot contains narrow passages [59, 94, 38, 80],
which are low-measure regions which have to be traversed to
reach a goal. Narrow passages are often occurring in tasks
which are particularly important in robotic applications, like
grasping, peg-in-hole, egress/ingress or long-horizon planning
problems [24, 35].

In previous work, we and other research teams have shown
that we can often efficiently solve high-dimensional planning
problems by using admissible lower-dimensional projections
of the state space, a topic we refer to as multilevel motion
planning [22, 5, 68, 77, 100]. When using a multilevel
motion planning framework, we can often use solutions to
simplified planning stages as admissible heuristics for the
original problem [71, 1]. To efficiently exploit those admissible
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Fig. 1: Efficient exploitation of admissible heuristics (stem-
ming from solution to relaxed problem) using the triple step
pattern. The triple step pattern is one of four section patterns
we advocate to efficiently exploit admissible heuristics near
narrow passages.

heuristics, we can use biased sampling methods [68, 76],
which we can combine with classical planning algorithms
like the rapidly-exploring random tree algorithm [64], the
probabilistic roadmap planner [66], its optimal star versions
[68] or the fast marching tree planner [76]. However, while
showing promising runtimes, those algorithms are prone to get
trapped when run on problems involving narrow passages.

In this work, we address narrow passages in multilevel
motion planning problems by developing section patterns.
Section patterns are methods to explicitly address problematic
situations that occur when we exploit solutions to relaxed
problems. We introduce four section patterns. First, we intro-
duce the Manhattan pattern, which we use to compute solution
paths which actuate the minimal amount of joints to reach
a goal region, which is advantageous for high dimensional
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systems [13, 68]. Second, we introduce the Wriggle pattern,
which we use to make small random walk steps to traverse a
narrow passage. Third, we introduce the Tunnel pattern, which
we use to steer around small infeasible regions. Fourth, we
introduce the Triple step pattern, which we use to backtrack in
case the algorithm gets stuck. In Fig. 1 the Triple step pattern
is showcased for a 37-degree of freedom (dof) robotic hand.
We execute the pattern when a collision occurs (1). We first
backstep (2), then sidestep (3) and finally we make a forward
step (4) to reach a goal position. The details of this and the
other patterns will be detailed later in this paper.

To coordinate the execution of the four section patterns, we
develop a novel algorithm we call pattern dance. The pattern
dance algorithm applies the section patterns sequentially by
trying first a pattern which is easy to compute (Manhattan pat-
tern) and reverting to the more complex pattern like Wriggle
or Tunnel only if needed. If all those patterns fail, we revert
to the Triple step pattern, which is the most computationally
demanding pattern. We embed this pattern dance algorithm
into four multilevel planners [68], namely the quotient space
RRT (QRRT) [64], the quotient space roadmap planner (QMP)
[66] and its optimal versions QRRT* and QMP* [68].

Our contributions are as follows.
1) We develop section patterns to efficiently exploit base

space paths (solutions to relaxed problems).
2) To coordinate sections patterns, we develop the pattern

dance algorithm.
3) We combine the pattern dance algorithm with four

multilevel planners (QRRT, QRRT*, QMP, QMP*) and
compare against 36 planners from the open motion
planning library (OMPL) and a previous sidestepping
algorithm [68] on 7 challenging scenarios.

II. RELATED WORK

Let us review the literature by focusing on two topics.
First, we focus on generating admissible heuristics [20] for
motion planning problems involving continuous domains [52].
We discuss sources of admissible heuristics like constraint
relaxations, lazy search, informed trees and past experience.
Second, given an admissible heuristic, we review methods to
efficiently exploit the heuristic either using path section ap-
proaches, local minima avoidance or narrow passage handling.

A. Generating Admissible Heuristics

Motion planning [52] is a well studied topic which has
been successfully applied to a wide range of problem domains
[63]. One of the most promising paradigms to solve motion
planning problems are (asymptotically optimal) sampling-
based planners [45, 84, 83, 6, 25]. However, these planners
might become inefficient in state spaces which are too high-
dimensional [68], contain intricate constraints [42] or narrow
passages [54]. We can, however, often solve such problems
efficiently, if we use admissible heuristics [1].

We believe there are three large sources of admissible
heuristics. First, we can compute admissible heuristics as
solutions to relaxed problems [71]. Early instances of this idea
to motion planning can be found in the constraint relaxation

frameworks by Ferbach and Barraquand [22], Sekhavat et al.
[87] and Bayazit et al. [5]. Newer instances of this idea are
putting the focus on different aspects like the specific type
of projection [92, 30] or the type of lower-dimensional space
[66, 9]. We refer to all those frameworks under the collective
term multilevel motion planning [68]. We can apply multilevel
frameworks both to holonomic [76, 77] and nonholonomic
planning problems [100, 68]. To create multilevel abstraction,
we can often remove links from a robot [5, 107], shrink
links [3, 80] or approximate a robot by simpler geometries,
either exact [66, 31] or approximate [10, 78, 95]. While most
methods use prespecified levels of abstraction, we can also
use workspace information to compute abstractions on the fly
[104, 57], adaptively switch between abstractions [91] or learn
useful abstractions for specific instances [9]. Our approach
is similar, in that we also use a multilevel motion planning
framework [68]. However, our work is complementary, in
that we focus specifically on computing path sections in the
presence of narrow passages in the state space.

A second source of admissible heuristics are lazy search
[8, 33] and informed sets [26, 44]. Instead of using relaxations,
we can compute lazy paths (paths not checked for collisions),
either forward from the start [36] or backwards from the goal
[90], to create an efficient heuristic which we can exploit
using dedicated algorithms [27]. Once a solution exists, we
can also exploit informed sets, sets which exclude all states
with provable higher cost-to-go [26, 27]. Those methods are
particularly important, since edge evaluations is one of the
bottlenecks in motion planning [47]. It therefore makes sense
to develop heuristics which evaluate edges as late as possible
[61, 37].

Third, inspired by pattern database approaches in discrete
search [14, 21, 39], we can also construct admissible heuristics
by using past experience. We can achieve this by either
precomputing motion primitives, like steering functions or
controllers like linear quadratic regulators [82, 81]. Or, we
can store previous solution paths directly and use them as
heuristics in new environments [17, 75]. Our work is comple-
mentary in that we assume a heuristic given and we focus on
exploiting this heuristic as efficiently as possible.

B. Exploiting Admissible Heuristic

Given an admissible heuristic, we can optimally exploit it by
discretizing the state space [23] and by using the A* algorithm
[34, 71, 1]. However, discretizing the state space usually does
not scale well to higher dimensional state spaces [11, 72, 28]
and performance would be sensitive to the resolution used
[19]. To avoid discretization, we found three categories of
work which use continuous methods to exploit admissible
heuristics.

First, we can use biased sampling methods. A straightfor-
ward way would be to represent the heuristic value of a state
by the radius of a hypersphere around the state [55]. We could
then exploit this hypersphere using dynamic domain sampling
[103]. Using such a scheme, we would expand states with
higher heuristic values more often. Depending on the exact
type of heuristic function used, we would obtain sampling
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distributions which would increase the probability to sample
states which are near to restricted workspace geometries [97,
102], to state space obstacles [2] or to narrow passage [38].
Those sampling distributions could also be learned over time to
improve sampling [58, 41]. Our approach is similar in that we
also use sampling-based methods. We differ, however, in that
we concentrate on designing efficient patterns complementary
to biased sampling methods.

Given a solution to a relaxed problem, we can often use
this solution as a guide path heuristic [107, 95] to quickly
find a solution in the original state space. Using the parlance
of fiber bundles, we call this the find section problem [68].
This problem requires a relaxed solution (a base path), which
we can find by computing workspace regions [73], by using
workspace graphs [16, 96] or by using a simpler robot geom-
etry [95]. In more complex environments, it is often advanta-
geous to use multiple base paths [101, 16] which decompose
the original problem into smaller subproblems [74, 7, 65]. To
exploit a base path, we can often use restriction sampling
[70, 66], which is highly efficient in high-dimensional state
spaces, where uniform sampling would most likely fail to
find solutions in a reasonable time [31]. Apart from biasing
sampling, we can also explicitly search over the set of states
which project onto the base path [107], which we call the path
restriction. To find paths over path restrictions, we previously
developed a sidestepping approach [68], where we propagate
states along the path restriction and execute sidesteps when
collision occur. However, as we show in Sec. V, sidesteps
are often not beneficial for narrow passages. While we also
search over path restrictions, we differ by developing dedicated
patterns to more efficiently traverse narrow passages.

Path section approaches and other heuristic search methods
often fail because they reach local minima. We define a
local minimum as a region in state space where the heuristic
is not or only weakly correlated with the true cost-to-go
[99]. To address local minima, we can choose one of two
approaches. First, we could preemptively avoid local minima.
If the environment is static, we can learn minima regions
and use this information to update the heuristic function [99].
Second, we could try to escape local minima. There exist
several methods to escape local minima like deflating the
heuristic value of states close to obstacles [18] or increasing
the search resolution to prevent evaluation of closeby states
[19]. A related idea is to utilize Tabu search [29] to prevent
sampling in previously visited regions.

It is important to make the distinction between local minima
which trap the planner and regions which might look like local
minima but which a planner can actually traverse. We call such
regions narrow passages [85]. To verify the existence of narrow
passages in low-dimensional state spaces, we can use exact in-
feasibility proofs [86, 4], for example using geometrical shapes
like alpha complices [62] or cell decomposition methods [106].
Because many state spaces have a local product structure, we
can often use configuration space slices [56, 88] to efficiently
test for infeasibility [98]. If the problem is feasible, we could
then use the geometrical shapes to enumerate narrow passages
[60]. To exploit narrow passages, we could bias sampling
to the most constricted areas [102, 94]. We differ to those

Fig. 2: Left: Fiber bundle R3 → R2 with base space B, total
space X , fiber space F , mappings π, πF and fiber Fb over
base element b. Right: Path restriction r(p) over base path p.
Adapted from [68].

approaches by not explicitly modeling narrow passages or
local minima, but we instead develop reactive measures to
escape minima and to traverse narrow passages. We thereby
avoid spending time on irrelevant narrow passages.

III. BACKGROUND

Let us describe the necessary background to follow the
exposition of our algorithm in Sec. IV and Sec. V. We start
by explaining multilevel motion planning, i.e. planning with
sequences of relaxed subproblems. While several formulations
exist, we believe the framework of fiber bundles [68] to be
a good way to concisely model multilevel abstractions and
describe our algorithms. We then describe the concepts of lift,
path restriction and path section which are particularly impor-
tant. Finally, we describe the notion of admissible heuristics,
which is one of the fundamental concepts to exploit solutions
to relaxed problems [71].

A. Optimal Motion Planning

Let X be the state space of the robot. To each state space
we associate a constraint function φ : X → {0, 1} which
evaluates to 0 if a state is constraint-free and to 1 otherwise.
We use the constraint function to define the free state space
Xfree = {x ∈ X | φ(x) = 0}. Together with an initial
configuration xI ∈ Xfree and a goal configuration xG ∈ Xfree,
we define an optimal motion planning problem [45, 83, 6] as
the tuple (Xfree, xI , xG, c), whereby our task is to develop an
algorithm which computes a path from xI to xG while staying
in Xfree and minimizing the cost functional c. In this work, we
use a minimal-length cost functional, but other costs are also
possible like minimal energy or maximum clearance.

B. Multilevel Motion Planning

Since high-dimensional motion planning problems are often
too computationally expensive to solve, we use a sequence of
relaxed problems which we refer to as multilevel abstractions
[68]. Given a state space X , let us denote a multilevel
abstraction as the tuple {X1, · · · , XK} with XK = X . To
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each state space Xk, we associate a constraint function φk
and a projection πk from Xk to Xk−1. We say that the
projection πk is admissible (w.r.t. the constraint functions), if
φk−1(πk(x)) ≤ φk(x) for any x in Xk. With admissibility,
we basically guarantee that solutions are preserved under
projections [64]. If we would allow inadmissible projections,
we would potentially sacrifice solutions and thereby sacrifice
(probabilistic) completeness.

C. Fiber Bundle Formulation

When working with multilevel abstraction, we quickly stum-
ble upon situations where we lack the appropriate vocabulary
to describe solution strategies. As a remedy, we describe
multilevel abstractions using the framework of fiber bundles
[89, 40, 53]. A fiber bundle is a tuple (Xk, Xk−1, Fk, πk, πFk

)
consisting of a total space Xk, a base space Xk−1, a fiber
space Fk, a projection mapping πk from total to base space
and a fiber projection mapping πFk

from total to fiber space.
We assume the projection mapping πk to be admissible.
With a fiber bundle, we model product spaces which locally
decompose as Xk = Xk−1 × Fk. The total space Xk is a
union of fiber spaces which are parameterized by the base
space Xk−1. If the level k is unimportant for the task as hand,
we often refer to a fiber bundle as the tuple (X,B,F, π, πF )
with X being the total, B the base, F the fiber space and π,
πF the base and fiber projection, respectively. We visualize a
prototypical fiber bundle in Fig. 2 (left). For more details and
motivation, we refer to our prior work [68]. For the purpose
of this paper, we focus on the three concepts of lift, path
restriction and path section, which we explain next.

D. Lift

Let (X,B,F, π, πF ) be a fiber bundle and let b ∈ B be
a base space element. We often like to project the element b
back to the total space X . We call this operation a lift [79, 68].
We define a lift as a mapping LIFT : B → X . To uniquely
select an element in X , we will overload this function as a
mapping LIFT : B × F → X by providing a fiber space
element f in F . If X is a product space, we define the lift as
LIFT(b, f) = (b, f) [68].

E. Path Restrictions

Let p : I → B with I = [0, 1] be a path on the base
space (a base path). Given a base path, one of the most central
sets which we use in this work are path restrictions. A path
restriction is the set r(p) = {x ∈ X | π(x) ∈ p[I]}, whereby
p[I] = {p(t) : t ∈ I} is the image of the base path in B and
π is the projection from X to B. We visualize this situation
in Fig. 2 (right), where we show the image of a base path on
the disk-shaped base space and its associated path restriction
on the total space.

F. Path Sections

Given a path restriction, we are often interested in finding
paths which are lying inside the path restriction. We call them
path sections [89]. A (smooth) path section w.r.t. a base path

p is a continuous mapping s from base space B to total space
X such that π(s(u)) = u for any u in the image of p [53].
This means, for each base path element, we select a unique
state from the path restriction—in a continuous manner.

G. Admissible Heuristics

Our motivation to introduce path restrictions and path
sections comes from the role they play in exploiting admissible
heuristics. Given a goal state xG, an admissible heuristic h(x)
for a state x in X is a lower-bound on the true cost-to-go
(or value) function h∗(x), which we define as the cost of the
optimal path from x to xG through Xfree. Formally, we write
this condition as h(x) ≤ h∗(x) [71, 1, 64].

Given an admissible heuristic, we can try to reach the goal
xG by using locally optimal decisions [34]. If we are at a
state x, we can make an optimal decision by doing a two-step
approach. First, we compute the f -value of all its neighbors,
which is the sum of its heuristic value and its cost-to-come
from the start state. We then expand the state (node) with the
lowest f -value, because, under the admissible heuristic, it is
our best guess to efficiently reach the goal [71].

However, in a continuous domain, we cannot straightfor-
wardly compute all neighboring states. Instead, we imagine
computing a small ε-neighborhood around the state. To com-
pute heuristic values, we project the complete neighborhood
down onto the base space. To reach the goal, our best guess
is to make a step into the direction of the current minimal-
cost base path. The states which we would expand in that way
are exactly the states on the path restriction. By searching a
path section over this path restriction, we efficiently exploit
the admissible heuristic given by the base path.

IV. FIND SECTIONS USING PATTERN DANCE

Our goal is to develop an algorithm which solves the find
section problem, the problem of finding a path section over a
given path restriction. After we state the problem, we discuss
how the problem fits into the more general framework of
motion planning using multilevel abstractions [68]. Finally, we
discuss the pattern dance algorithm, which coordinates four
section patterns to efficiently find feasible path sections.

A. Find Section Problem

Let (X,B,F, π, πF ) be a fiber bundle on X (possibly in a
sequence of fiber bundles) and let p : I → B be a base path
on B starting at π(xI) and ending at π(xG). Given the base
path p and its path restriction r(p) ⊆ X , our goal is to develop
an algorithm to find a feasible path section, i.e. a path lying in
the intersection of the path restriction r(p) and the free state
space Xfree connecting xI to xG. We call this problem the find
section problem.

To illustrate the find section problem, we visualize it in
Fig. 3. The figure shows a base path p on B (bottom) and its
restriction r(p) on X (top). Our goal is to connect xI to xG
while staying inside r(p). To efficiently solve the find section
problem, we often need to track information along the path
restriction. To track this information, we introduce the notion
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Fig. 3: Path restriction r(p) on a total space X over a base
path p from base space B, together with initial state xI , goal
state xG, projection π and head pointer with head pointer H ,
consisting of state x and location l.

Algorithm 1 MultilevelPlanner(xI , xG, X1, . . . , XK)

Input: Initial state xI , goal state xG, state spaces X1, . . . , XK

Output: Graphs G1, . . . , GK

1: Let X be a PRIORITY QUEUE
2: for k = 1 to K do
3: FINDSECTION(Xk)
4: X.PUSH(Xk, IMPORTANCE(Xk))
5: while ¬PTC(Xk) do
6: Xselect = X.POP
7: GROW(Xselect)
8: X.PUSH(Xselect, IMPORTANCE(Xselect))
9: end while

10: end for
11: return GRAPHS(X1, . . . , XK)

of a head pointer H as the tuple H = (x, l, r) consisting of a
path restriction r(p) ⊆ X over a base path p in B, a current
state x in r(p) and a location l ∈ [0, 1] defining the position
along the base path. We think of the head pointer as a ruler
which we move forward along the path restriction towards
the goal state. In pseudocode, we refer to the current state as
STATE(H) and its location as LOCATION(H).

B. Find Sections in Multilevel Planning

The find section problem is a subproblem of the more
general multilevel motion planning problem (see Sec. III-B).
In previous works, we proposed to solve multilevel planning
problems using a dedicated multilevel planner [68]. To clarify
the role of finding sections, we describe this multilevel planner
in Alg. 1. We initialize this algorithm with an initial state xI ,
a goal state xG and a sequence of bundle spaces X1, . . . , XK .
To search for a feasible path, we first initialize a priority queue
(Line 1), then we iteratively explore the bundle spaces (Line
2) by first trying to solve the find section problem (Line 3),

Algorithm 2 FindSection(Xk)

1: if EXISTS(Xk−1) then
2: p← BASEPATH(Gk−1)
3: r← RESTRICTION(p)
4: H ← HEADPOINTER(xI , location = 0, r)
5: PATTERNDANCE(H)
6: end if

then pushing the k-th bundle space into the priority queue
(Line 4). We compute the importance of a bundle space by
the sampling density of its associated graph [68] as

IMPORTANCE(Xk) =
1

|Vk|1/nk + 1
(1)

with |Vk| being the number of nodes in the graph Gk on Xk

and nk is the dimensionality of Xk. We then go into a while
loop which terminates if a planner terminate condition (PTC)
of the k-th space is not fulfilled (Line 5). A PTC can be a
timelimit, an iteration limit or a desired cost. We then pop the
space with the highest importance from the queue (Line 6),
execute one grow iteration for the selected bundle space (Line
7) and push the space back to the queue thereby updating
its importance (Line 8). The planner terminates if the PTC
of all bundle spaces is false and returns the graphs of all
computed levels (Line 11). From those graphs, we can then
compute the (optimal) solution path using a discrete A* search
[34] (if one exists). All multilevel planner share this high-
level structure. Multilevel planners differ by how the GROW
function is implemented.

We previously developed four multilevel planners. First,
the quotient-space roadmap planner (QMP), in which we
implement GROW as a probabilistic roadmap (PRM) step
[46]. Second, the quotient-space rapidly-exploring random tree
(QRRT), in which we implement GROW as an RRT step
[48]. Finally, we use the two asymptotically optimal versions
QRRT* and QMP*, in which we implement a step of RRT*
and PRM* [45], respectively. The algorithms also differ in
how we compute the distance metric and how we implement
sampling inside the grow function, as we detail in our previous
publication [68].

The main contribution of our paper, the pattern dance
algorithm, is an efficient method to solve the find section
problem. The integration into the multilevel planner is shown
in the FINDSECTION method in Alg. 2. First, we check if
there exists a base space (Line 1). We then compute a base
path p from the underlying graph or tree on the base space
(Line 2). We then build a path restriction r from p (Line 3)
and create a head on the path restriction (Line 4). We then
call the pattern dance algorithm with the head as input.

C. Pattern Dance Algorithm

We depict the pseudocode of the pattern dance algorithm
in Alg. 3. The input is a head over the path restriction and
a recursion depth (initially set to zero). Inside the pattern
dance algorithm, we coordinate the execution of four section
patterns. The rational behind the coordination is to try less
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Algorithm 3 PatternDance(H, depth = 0)

Parameters: Maximum branching factor Bmax, maximum
depth factor Dmax, base space step size δXk−1

1: if MANHATTANPATTERN(H) then
2: return true
3: end if
4: if depth ≥ Dmax then
5: return false
6: end if
7: if WRIGGLEPATTERN(H) or TUNNELPATTERN(H) then
8: return PATTERNDANCE(H , depth+1)
9: end if

10: l← LOCATION(H) + δXk−1

11: xB ← BASEPATHAT(p, l)
12: for j ∈ [1, Bmax] do
13: xF ← SAMPLEFIBER(xB)
14: x← LIFT(xB , xF )
15: xH ← STATE(H)
16: if ISVALID(x) and ¬CHECKMOTION(xH , x) then
17: if TRIPLESTEPPATTERN(H,x) then
18: return PATTERNDANCE(H , depth+1)
19: end if
20: end if
21: end for

complex patterns first while we can successfully move the
head forward along the path restriction. Only if no progress
is made, we revert to more and more complex patterns to
resolve the situation. We found this to be an efficient strategy
to quickly find sections.

Those four section patterns are detailed in Sec. V and either
move the head forward by controlling the lowest amount
of joints possible (MANHATTANPATTERN), execute random
walk steps with forward bias (WRIGGLEPATTERN), try to
overcome small barriers using steps outside the path restriction
(TUNNELPATTERN) or use a dedicated backtracking procedure
(TRIPLESTEPPATTERN) to efficiently find feasible path sec-
tions.

Before going into detail, we provide a brief summary and
motivation. The algorithm iterates through all four patterns,
starting with the computationally cheapest MANHATTANPAT-
TERN (Line 1). If the pattern succeeds, we successfully return
(Line 2). Otherwise, we check if we reached the maximum
recursion depth (Line 4) and return with failure (Line 5).

If the depth is below the maximum depth, we continue by
executing first the WRIGGLEPATTERN and the TUNNELPAT-
TERN (Line 7). If one pattern successfully terminates, we re-
cursively call the pattern dance algorithm and we increase the
recursion depth (Line 8). If no pattern successfully terminates,
we backtrack using the TRIPLESTEPPATTERN. To execute the
triple step pattern, we first interpolate a single step forward
along the base path (Line 10, 11). We then attempt to find
a valid fiber space element for a maximum of Bmax attempts
(Line 12). This is done by first sampling a fiber state over
the given base state (Line 13). We then lift the state to the
path restriction (Line 14) to obtain a state x. If this state is
valid and we cannot reach it from the head state (Line 16),

Parameter Description Values used

Dmax Maximum depth of pattern dance 3
Bmax Maximum branching of pattern dance 500
Smax Maximum sampling attempts 100
δXk−1

Step size on base space 0.01µXk−1

δFk
Step size on fiber space 0.01µFk

TABLE I: Parameters used in algorithm. The variable µX

refers to the measure (volume) of the state space X .

we execute the triple step pattern with target x (Line 17). If
we successfully executed the pattern, we call the pattern dance
algorithm again recursively. Note that the small forward step
of δXk−1

(Line 10) is an essential component of our algorithm.
If we would sample directly over the head base state, we often
would sample symmetrical local minima (as an example, see
state p′1 in Fig. 8). We found this to be particularly important
for higher dimensional state spaces, where we often encounter
infinitely many symmetrical local minima (consider the set of
horizontal rotations of the cylinder before entering the opening
in the Bugtrap scenario in Sec. VI).

To implement the section patterns and the pattern dance
algorithm, we use the open motion planning library (OMPL)
[93]. The algorithms are freely available and part of our
multilevel motion planning extension of OMPL [68]. All code
can be downloaded over github1. All parameters used in the
algorithms are shown in Table I, including the values we use
for the evaluations. The values for Bmax, Smax, Dmax are chosen
as large as possible to still give good performance on our
hardware.

V. SECTION PATTERNS

The pattern dance algorithm relies on four section patterns,
to which we like to provide more detail and motivation. Each
of those section patterns is a particular approach to efficiently
traverse narrow passages and escape local minima, whereby
a local minimum is defined as a region where the heuristic
cost is only weakly correlated with the true cost-to-go [99].
Each section pattern takes as input a head pointer and tries
to move this head pointer forward along the path restriction.
Please also consult Fig. 3 for visualization of the terminology
used.

A. Manhattan Pattern

Our first section pattern to propagate the head pointer H
is the Manhattan (MH) pattern. With the MH pattern, we
interpolate a path between the head state and the goal state
along the path restriction. To interpolate, we first interpolate
along the base path while keeping the fiber element fixed. Once
we reach the end of the base path, we interpolate along the
fiber space to the goal state. This method is motivated by our
desire to actuate the smallest number of joints at the same time,
which is advantageous for high-dimensional systems [13].

We detail the MH pattern in Alg. 4. We take as input a
head pointer H over a path restriction r with base path p.

1https://github.com/aorthey/MotionExplorer/ and https://github.com/
aorthey/ompl/.

https://github.com/aorthey/MotionExplorer/
https://github.com/aorthey/ompl/
https://github.com/aorthey/ompl/
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Algorithm 4 ManhattanPattern(H)

Parameters: Base space step size δXk−1

1: xH ← STATE(H)
2: xF ← PROJECTFIBER(xH) . πF (xH)
3: l← LOCATION(H)
4: s← ∅
5: while l < LENGTH(p) do
6: xB ← BASEPATHAT(p, l) . State p(l) on base path
7: x← LIFT(xB , xF )
8: s← s ∪ {x}
9: l← l + δXk−1

10: end while
11: s← s ∪ {xG}
12: H ← CHECKMOTION(s) . Return Last Valid
13: return HASREACHEDGOAL(H)

Fig. 4: Left: Rectangular rigid robot which has to traverse a
narrow passage from a green start to a red goal state. Right:
The geometry of its state spaces (darker colors are closer to
start state).

We first project the head state onto the fiber (Line 1-2) by
using the fiber projection πF . We then take the location of
the head pointer along the base path (Line 3) and step along
the base path in increments of δXk−1

(Line 5-10) and add the
states to the path s (Line 4). This is done by computing the
next base state (Line 6), lifting the base state into the total
space (Line 7) and adding it to the path (Line 8). Once we
reached the end of the base path, we add the goal state to the
section (Line 11). The resulting path s is schematically shown
in Fig. 3. Finally, we evaluate the path by moving along until a
constraint violation occurs or we reached the goal state (Line
12). The function CHECKMOTION returns the last valid state
which we use to update the head H . We then return true if
the head has reached the goal and false otherwise.

Fig. 5: Two path restrictions for the rectangular rigid robot
near a narrow passage. Left: Robot moves along a straight
base path. Right: Robot moves along a slanted base path.

Fig. 6: Wriggle pattern to traverse a narrow passage: Given
a feasible state p1, we make coordinated random walk steps
along the fibers of the path restriction. The distance between
fibers is determined by the base space step size parameter
δXk−1

.

B. Interlude: The Geometry near Narrow Passages

The next three section patterns are tailor-made solutions to
either traverse a narrow passage or to escape a local minimum.
To motivate those patterns, we first study the geometry of state
spaces near narrow passages. We use a simple toy example of
a rigid rectangular body moving in the 2D plane. The state
space of this rigid body is the special Euclidean group SE(2),
consisting of position and orientation. We assume that the body
is located near to a narrow passages as shown in Fig. 4 (left).
We will further assume that our task is to move the rigid body
through the narrow passage, from a start state (green) to a goal
state (red). We will represent a state as (x0, x1, x2) ∈ SE(2),
with x0, x1 being vertical and horizontal displacement and x2
the orientation. We visualize a subset of the state space in
Fig. 4 (right), whereby points in collision are colored from
dark red (low x1 value, close to start) to bright blue (high x1
value, close to goal).

To generate path restrictions, we first use a relaxation of
the problem onto a circular disk as shown in Fig. 4 (Left).
We model this relaxation using the fiber bundle SE(2)→ R2

with base space R2 and total space SE(2) [66]. Let us assume
a base path p : I → R2 for the disk to be given. This path
induces a two-dimensional path restriction in SE(2), two of
which we visualize in Fig. 5. The left figure shows a path
restriction for a base path going straight through the passage,
as shown in Fig. 4. The right figure shows a path restriction for
a base path which goes slanted through the passage. Both are
also slices through the state space geometry shown in Fig. 4
(right). From Fig. 5, we observe that there are at least three
failure cases. Either, we reach a local minimum, we collide
with constraints near a narrow passage or we get stuck in front
of a small but infeasible region. For each case, we develop a
dedicated section pattern to either advance or backtrack.
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Algorithm 5 WrigglePattern(H)

Parameters: Base space step size δXk−1
, fiber space step size

δFk
, maximum samples Smax

1: l← LOCATION(H) + δXk−1

2: steps← 0
3: while l < LENGTH(p) do
4: xB ← BASEPATHAT(p, l)
5: xH ← STATE(H)
6: xFH

← PROJECTFIBER(xH)
7: ctr← 0
8: while ctr < Smax do
9: xF ← SAMPLEUNIFORMNEAR(xFH

, δFk
)

10: x← LIFT(xB , xF )
11: if ISVALID(x) then
12: if CHECKMOTION(xH , x) then
13: Gk ← Gk ∪ {xH , x}
14: UPDATEHEAD(H,x)
15: steps← steps + 1
16: break
17: end if
18: end if
19: ctr← ctr + 1
20: end while
21: if ctr ≥ Smax then
22: break
23: end if
24: end while
25: return steps > 0

C. Wriggle Pattern

If we reach a local minimum, the triple step pattern is a way
to backtrack to a narrow passage. However, we often might
execute the triple step pattern prematurely, because we bumped
into constraints near or in a narrow passage. To circumvent
those situations, we use the wriggle pattern. With the wriggle
pattern, we make coordinated random steps along the fibers
of the path restriction and accept a step if it is valid, which is
similar to retraction-based sampling [105]. We visualize this
pattern in Fig. 6.

We show the pseudocode in Alg. 5. We start by making one
δXk−1

step forward from the head (Line 1). Until we have not
reached the end (Line 3), we get the base state at location l
(Line 4), and get the fiber element of the head state (Line 6).
We then sample for Smax rounds (Line 8) by sampling a fiber
state in the δFk

proximity of the head fiber state (Line 9). We
then lift the base and fiber state (Line 10) and check if the
state is valid (Line 11). If the state is valid, we check if the
motion from the head to the new state is feasible (Line 12-17).
We terminate if we could not expand the state (Line 21-23)
or reach the end. We then return true if we made at least one
step (Line 25).

D. Tunnel Pattern

While the wriggle pattern locally explores the neighborhood
inside the path restriction, we often encounter situations where
we find it advantageous to momentarily step outside the

Fig. 7: Tunnel pattern to traverse a narrow passage: Given two
feasible states p1 and p2, we connect them by momentarily
leaving the path restriction to circumnavigate the infeasible
region between them.

path restriction to overcome an infeasible region. From the
perspective of the path restriction, we “tunnel” through the
infeasible region, which we therefore refer to as the tunnel
pattern. With the tunnel pattern, we assume to be located at a
local minimum p1 as shown in Fig. 7. To resolve this situation,
we try to find the next valid state p2 while keeping the fiber
element constant. We then try to connect p1 to p2 by sampling
valid states in a smoothly increasing neighborhood of the base
space and a constant neighborhood in fiber space. While p2 is
not reached, we accept new states if they decrease the distance
to p2.

We show the pseudocode in Alg. 6. We first search for a
tunnel ending state xEnd at base path location lEnd (Line 1).
To find the tunnel ending, we step forward along the base
path without changing the fiber until we find a valid state. We
then try to connect the head state xH to the tunnel ending state
xEnd. We use a while loop to move along the relevant base path
segment from the head location l to the tunnel end location lEnd
(Line 6). We first check if we can connect the head state to the
tunnel end state (Line 7). If true, we add a new edge into the
graph (Line 8), set the head to the tunnel ending state (Line 9)
and return true (Line 10). Otherwise, we step forward along
the base path with step size δXk−1

(Line 12) and query the
base state at l (Line 13). Instead of using the base state exactly,
we use a smoothly increasing neighborhood parameter ε. The
value of ε depends on the counter ctr and smoothly interpolates
between 0 and 10δXk−1

using an Hermite polynomial [15]
(Line 14). We then attempt to make a step towards the tunnel
ending for a maximum of Smax attempts (Line 16). We do
this by sampling a base space element (Line 17) and a fiber
element (Line 18). We then lift the state (Line 19) and check
for validity (Line 20). If the new state is valid, its distance is
closer to the tunnel ending and we can connect it to the head
state (Line 22), we add a new edge to the graph (Line 23), set
the head state to the new state (Line 24) and continue forward
(Line 25). If we fail to find a better sample for Smax attempts,
we return false (Line 30-32). We also return false if we reach
the base path location lEnd without having a valid connection
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Algorithm 6 TunnelPattern(H)

Parameters: Base space step size δXk−1
, fiber space step size

δFk
, maximum samples Smax

1: (xEnd, lEnd)← TUNNELEND(H)
2: xH ← STATE(H)
3: xFH

← PROJECTFIBER(xH)
4: dbest ← DISTANCE(xH , xEnd)
5: l← LOCATION(H)
6: while l ≤ lEnd do
7: if CHECKMOTION(xH , xEnd) then
8: Gk ← Gk ∪ {xH , xEnd}
9: UPDATEHEAD(H,xEnd)

10: return true
11: end if
12: l← l + δXk−1

13: xB ← BASEPATHAT(p, l)
14: ε← SMOOTHPARAMETER(0, 10δXk−1

, Smax)
15: ctr← 0
16: while ctr < Smax do
17: xB ← SAMPLEUNIFORMNEAR(xB , ε(ctr))
18: xF ← SAMPLEUNIFORMNEAR(xFH

, δFk
)

19: x← LIFT(xB , xF )
20: if ISVALID(x) then
21: d← DISTANCE(x, xEnd)
22: if d < dbest and CHECKMOTION(xH , x) then
23: Gk ← Gk ∪ {xH , x}
24: xH ← x
25: break
26: end if
27: end if
28: ctr← ctr + 1
29: end while
30: if ctr ≥ Smax then
31: return false
32: end if
33: end while
34: return false

(Line 34).

E. Triple Step Pattern

To escape a local minimum, we develop the triple step
pattern. With the triple step pattern, we connect two states
on the path restriction using a triple backtracking step.

The idea of the triple step pattern is to connect two states
on (or near) the same fiber. Before explaining the pattern in
detail, we first visualize the pattern in Fig. 8. You can see
a rectangular rigid body in the plane, which is currently at
state p1 (Fig. 8 (a)) and which we like to move to state p4
(Fig. 8 (d)). To connect those states, we first move backwards
along the path restriction from p1 to another state p2 (Fig. 8
(b)) while moving from p4 to another state p3 (Fig. 8 (c)),
respectively. We move backwards until we can connect p2
and p3 by a straight line segment. In that case we execute
a backstep from p1 to p2, a sidestep (along the fiber marked)
from p2 to p3 and a forward step from p3 to p4. Note that p4

(a) At p1 (after
collision).

(b) At p2 (after
backstep).

(c) At p3 (after
sidestep).

(d) At p4 (after
forward step).

Fig. 8: Triple step pattern to traverse a narrow passage: We
start at a state p1 (a), backstep to a state p2 (b), sidestep along
the fiber to p3 (c) and then step forward to reach a state p4
(d).

is slightly moved forward such that we avoid situations where
we backtrack to a symmetric local minimum like p′1 which
would not improve our location along the path restriction.

We show the pseudocode for the triple step pattern in Alg. 7.
Our goal is to connect the head state to the given state x.
We first compute a midpoint on the fiber space (Line 5) (to
minimize the number of CHECKMOTION calls [61]). We then
move backwards along the base path while we are greater
than the parameter δXk−1

(Line 6-7). For each location, we
interpolate a base state (Line 8), lift the state using the fiber
midpoint (Line 9) and check if this state is valid. If it is valid,
we compute intermediate states x1 and x2 (Line 11, 12) and
check if the motion between them is feasible (Line 13). If that
is true, we additionally check if the backward and forward
steps are feasible (Line 14, 15). If that is true, we add those
edges to the graph (Line 16-18) and update the head to our
new state x (Line 19). In that case we return true (Line 20). If
we fail to find such a triple step, we terminate once we reach
the beginning of the base path location and return false (Line
27).

VI. EVALUATIONS

To evaluate our pattern dance algorithm, we integrate it into
the multilevel planner QRRT, QRRT*, QMP and QMP*, as we
discussed in Sec. IV-B. We then conduct two comparisons.
First, we compare our planner to 36 available planning al-
gorithms in the Open motion planning library (OMPL) [63]
on 7 challenging environments as shown in Fig. 9. For each
algorithm, we use the abbreviated name. For a full list of
algorithms with full names and associated publication, see
[68] and the OMPL documentation [93]. Second, we compare
the multilevel planner with the pattern dance algorithm to an
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(a) 06D Bugtrap (b) 06D Double Lshape (c) 10D Chain Egress

(d) 37D ShadowHand Ball (e) 37D ShadowHand Metal (f) 37D ShadowHand Mug (g) 37D ShadowHand Scissor

Fig. 9: Scenarios for evaluations. The task is to move the robot from the start state (green) to the goal state (red). Top Row
(left to right): Bugtrap (6-dof), Double L Shape (6-dof) (goal configuration not shown) and Chain Egress (10-dof). Bottom
Row: Overhand, Underhand, Single-Finger and Double-Finger Pregrasp (each 37-dof) (start configurations not shown).

older version of the same multilevel planner, where we use a
recursive sidestepping algorithm to quickly find sections [68].

A. Evaluation Metric

To evaluate, we use a 8GB RAM 4-core 2.5GHz laptop run-
ning Ubuntu 16.04. For each experiment, we use a minimum
length cost (for planner which support cost functions) and we
let each planner run 10 times with a cut-off time limit of 60
seconds. We then report on the average runtime over those 10
runs. We show the results in Table II.

Concerning the results, there are two notes of caution.
First, we let each OMPL planner run out-of-the-box without
any parameter tuning. Further tuning of parameters could
potentially improve results significantly. Second, due to the
high number of planner and scenarios, we let each planner
run only 10 times and take the average. However, averaging
over 10 runs might exhibit more variance and thereby create
more outliers.

B. 06-dof Bugtrap

For the first evaluation, we use the Bugtrap scenario [54]
(Fig. 9a). The lowest runtime we found in the literature is
22.17s for a version of the Selective-Retraction-RRT [54, 105].
However, this runtime is not directly comparable due to

different hardware, implementation, parameters and operating
systems. To relax the problem, we use an inscribed sphere at
the center of the cylindrical bug as shown in Fig. 10g and
Fig. 10d.

We show the results of our evaluation in Fig. II. The
best performing planner is QMP (3rd planner in table) with
0.51s followed by QMP* (4) with 0.90s and QRRT (1)
with 4.45s. We also see good performance of the BiTRRT
(13) planner [43] with 11.54s. We note that the QRRT* (2)
algorithm requires 24.87s, which we believe to be caused by
the additional burden of rewiring the tree [84, 68].

C. 06-dof Double L shape

In the next evaluation, we like to show that the section pat-
terns are not specific to the cylindrical geometry, but are more
widely applicable to other rigid bodies. As demonstration,
we use the double L-shape scenario [97], where two L-shape
bodies are connected to each other as shown in Fig. 9b. The
task is to move through a vertical wall with a small quadratic
hole. We use a two-level relaxation by using an inscribed
sphere as shown in Fig. 10h and Fig. 10e. To make our method
more robust against base paths too close to obstacles, we
increase the size of the sphere slightly to increase clearance
from obstacles.
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Algorithm 7 TripleStepPattern(H,x)

Parameters: Base space step size δXk−1

1: xH ← STATE(H)
2: l← LOCATION(H)
3: xF1

← PROJECTFIBER(H)
4: xF2

← PROJECTFIBER(x)
5: xFm

← STEER(xF1
, xF2

, 0.5) . Midpoint
6: while l > δXk−1

do
7: l← l − δXk−1

8: xB ← BASEPATHAT(p, l)
9: xmid ← LIFT(xB , xFm

)
10: if ISVALID(xmid) then
11: x1 ← LIFT(xB , xF1

)
12: x2 ← LIFT(xB , xF2)
13: if CHECKMOTION(x1, x2) then
14: if CHECKMOTION(xH , x1) then
15: if CHECKMOTION(x2, x) then
16: Gk ← Gk ∪ {xH , x1}
17: Gk ← Gk ∪ {x1, x2}
18: Gk ← Gk ∪ {x2, x}
19: UPDATEHEAD(h, x)
20: return true
21: end if
22: end if
23: break . End While Loop
24: end if
25: end if
26: end while
27: return false

Our evaluation shows that QMP performs best with 1.27s
followed by QMP* (1.63s), QRRT (1.86s) and QRRT* (2.00s).
The next best planner from OMPL is LBKPIECE1 (38) with
49.79s.

D. 10-dof Chain Egress

In the third evaluation, we like to increase the complexity by
considering an articulated chain (10-dof) as shown in Fig. 9c.
The task is to remove the chain from a pipe, a typical egress
scenario. Note that for such systems, we can find analytical
feasible path sections if we assume the base path of the head
to be curvature constrained [67]. However, we will not make
such assumption in this paper.

To relax the problem, we use an inscribed sphere in the
head of the chain as shown in Fig. 10i and Fig. 10f. As in
the case of the double L-shape, we slightly increase the size
of the sphere to make our method more robust against base
paths too close to obstacles.

In our evaluations, we show that QRRT performs best with
0.55s followed by QRRT* (0.56s). The next best planners are
TRRT (11) (0.81s), QMP (1.91), BiTRRT (12) (4.57s) and
QMP* with 7.29s. Note that there are 12 OMPL planner which
cannot address this problem, because they do not support
compound state spaces or do not have dedicated projection
functions for such spaces.

(a) Shadow Hand
Level 3 R37.

(b) Shadow Hand
Level 2 R18.

(c) Shadow Hand
Level 1 R13.

(d) Bugtrap Level 2
SE(3).

(e) Double Lshape
Level 2 SE(3).

(f) Articulated Chain
Level 2 SE(3)× R6.

(g) Bugtrap Level 1
R3.

(h) Double Lshape
Level 1 R3.

(i) Articulated Chain
Level 1 R3.

Fig. 10: Multilevel abstraction using simplified models.

E. 37-dof Pre-Grasp

For the next evaluations, we compute (pre-)grasping paths
for a ShadowHand mounted on a KUKA LWR robot. The
tasks are to compute an overhand grasp on a ball (Fig. 9d),
an underhand grasp on a metal piece (Fig. 9e), a single-
finger precision grasp on a mug (Fig. 9f) and a double-finger
precision grasp on a scissor (Fig. 9g). The starting state for
all scenarios is an upright position of the arm with hand
being open, as shown in Fig. 10a. To relax the problem, we
use a three-level abstraction by first removing three fingers
(Fig. 10b) and subsequently removing the thumb (Fig. 10c) of
the hand.

Our evaluations show the following results. First, for the
Ball scenario, we see that QMP and QMP* perform best with
0.86s. The next best planner is the OMPL planner BiRLRT
(15) [57] with 1.52s, QRRT with 2.01s and RRTConnect (6)
with 1.70s. We note that also the planner PDST (35) [51],
RLRT (14) [57] and KPIECE1 (36) [92] perform competively
with 3.25s, 3.68s and 6.27s, respectively. The planner QRRT*
does not perform well on this problem instance with 25.35s,
due to similar problems as on the Bugtrap scenario. Second,
for the underhand grasp on the metal piece, we see that QMP*
performs best with 1.94s followed by RRTConnect (6) with
8.16s and QMP with 18.98s. We will address the discrepancy
between QMP and QMP* further in Sec. VII. Third, for the
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1 QRRT (ours) 4.45 1.86 0.55 2.01 35.63 19.80 60.00
2 QRRT* (ours) 24.87 2.00 0.56 25.35 43.95 60.00 60.00
3 QMP (ours) 0.51 1.27 1.91 0.86 18.98 1.20 14.52
4 QMP* (ours) 0.90 1.63 7.29 0.86 1.94 1.63 37.27

5 RRT 60.00 60.00 49.77 60.00 60.00 60.00 60.00
6 RRTConnect 60.00 60.00 60.00 1.70 8.16 57.38 60.00
7 RRT# 60.00 60.00 45.43 60.00 60.00 60.00 60.00
8 RRT* 60.00 60.00 51.74 60.00 60.00 60.00 60.00
9 RRTXstatic 60.00 60.00 50.49 60.00 60.00 60.00 60.00
10 LazyRRT 60.00 60.00 55.56 60.00 60.00 60.00 60.00
11 TRRT 60.00 60.00 0.81 42.08 60.00 60.00 60.00
12 BiTRRT 11.54 54.30 4.57 60.00 60.00 60.00 60.00
13 LBTRRT 60.00 60.00 60.00 60.00 60.00 60.00 60.00
14 RLRT 60.00 60.00 51.39 3.68 28.47 60.00 60.00
15 BiRLRT 60.00 57.40 60.00 1.52 25.60 60.00 60.00
16 pRRT 60.00 60.00 49.41 60.00 60.00 60.00 60.00
17 FMT 60.00 60.00 60.00 60.00 60.00 60.00 60.00
18 BFMT 60.00 50.34 60.00 60.00 60.00 60.00 60.00
19 PRM 60.00 56.47 60.00 37.25 52.72 60.00 60.00
20 PRM* 60.00 57.80 60.00 34.24 50.04 60.00 60.00
21 LazyPRM 60.00 60.00 60.00 60.00 60.00 60.00 60.00
22 LazyPRM* 60.00 60.00 60.00 54.06 60.00 60.00 60.00
23 SPARS 60.00 59.73 60.00 60.00 60.00 60.00 60.00
24 SPARStwo 60.00 54.69 60.00 60.00 60.00 60.00 60.00
25 SST 60.00 60.00 60.00 60.00 60.00 60.00 60.00
26 EST 60.00 60.00 50.46 24.96 45.64 60.00 60.00
27 BiEST 60.00 60.00 59.85 29.79 33.36 60.00 60.00
28 InformedRRT* 60.00 60.00 - 60.00 60.00 60.00 60.00
29 SORRT* 60.00 60.00 - 60.00 60.00 60.00 60.00
30 kBIT* 60.00 60.00 - 34.17 46.44 60.00 60.00
31 kABIT* 60.00 60.00 - 50.28 44.56 60.00 60.00
32 AIT* 60.00 60.00 - 55.35 60.00 60.00 60.00
33 STRIDE 60.00 60.00 - 29.58 48.98 60.00 60.00
34 ProjEST 60.00 60.00 - 47.77 60.00 60.00 60.00
35 PDST 60.00 60.00 - 3.25 54.42 60.00 60.00
36 KPIECE1 60.00 60.00 - 6.27 32.48 60.00 60.00
37 BKPIECE1 60.00 60.00 - 52.35 60.00 60.00 60.00
38 LBKPIECE1 60.00 49.79 - 60.00 60.00 60.00 60.00
39 SBL 60.00 50.30 - 60.00 60.00 60.00 60.00
40 CForest 60.00 60.00 - 60.00 60.00 60.00 60.00

TABLE II: Runtime (s) of motion planner on the scenarios
from Fig. 9, each averaged over 10 runs with cut-off time
limit of 60s. An entry − means that planner does not support
the particular state space.

single-finger precision grasp on the mug, we observe that QMP
performs best with 1.20s followed by QMP* with 1.63s. While
QRRT performs significantly worse (19.80s), QRRT* was not
able to solve this problem (60.00s). Fourth, for the double-
finger precision grasp on the scissor, we observe that QMP
performs best with 14.52s followed by QMP* with 37.27s.

Runtime in seconds (10
run average)

06
D

B
ug

tr
ap

06
D

D
ou

bl
e

L
sh

ap
e

10
D

C
ha

in
E

gr
es

s

37
D

Sh
ad

ow
H

an
d

B
al

l

37
D

Sh
ad

ow
H

an
d

M
et

al

37
D

Sh
ad

ow
H

an
d

M
ug

37
D

Sh
ad

ow
H

an
d

Sc
is

so
r

1 QMP (ours) 0.51 1.27 1.91 0.86 18.98 1.20 14.52
2 QMP (SideStepping) 60.00 26.08 60.00 1.07 55.37 6a 60.00

3 QMP* (ours) 0.90 1.63 7.29 0.86 1.94 1.63 37.27
4 QMP* (SideStepping) 60.00 30.11 60.00 1.76 60.00 12a 60.00

5 QRRT (ours) 4.45 1.86 0.55 2.01 35.63 19.80 60.00
6 QRRT (SideStepping) 60.00 27.72 9.14 18.65 60.00 44a 60.00

7 QRRT* (ours) 24.87 2.00 0.56 25.35 43.95 60.00 60.00
8 QRRT* (SideStepping) 60.00 60.00 16.42 42.33 54.05 48a 60.00

TABLE III: Comparison of multilevel planners with sidestep-
ping [68] versus multilevel planner with our pattern dance
algorithm.

a Taken from [68].

No other planner is able to solve this problem. We will further
discuss the high runtime of both QMP and QMP* in detail in
Sec. VII.

VII. LIMITATIONS AND DISCUSSION

While our evaluations support the usage of section patterns
for narrow passage planning problems, we also like to point
out two limitations of our approach. To each limitation, we
will discuss possible ways to eventually address and resolve
the limitation.

Fig. 11: Limitations of Section Pattern Approach. Base path
does not admit a feasible path section. See text for clarification.

A. Increased runtime on Metal and Scissor Scenario

The first limitation is the increased runtime of our planner
on the 37D ShadowHand Scissor and the Metal scenario. We
distinguish between two subproblems. First, we observe that
QRRT and QRRT* have a runtime of 60s on the Scissor
scenario. Both scenarios, however, are ingress scenarios, where
the planner needs to find a narrow passage on the base space



13

Run 1 2 3 4 5 6 7 8 9 10

37D ShadowHand Metal Scenario

QMP 1.53 1.11 1.20 0.99 1.06 60.00 60.00 2.93 1.02 60.00
QMP* 0.98 1.15 0.93 1.23 2.73 1.13 1.03 7.61 0.98 1.65

37D ShadowHand Scissor Scenario

QMP 1.45 1.50 2.14 2.17 60.00 60.00 2.44 7.49 1.51 6.51
QMP* 60.00 60.00 2.22 60.00 6.27 60.00 60.00 60.00 1.92 2.30

TABLE IV: Runtime (s) for QMP and QMP* on each run. Av-
erage runtimes are 18.98s/1.94s (QMP/QMP*) for the Metal
scenarios and 14.52s/37.27s for the Scissor scenario.

to enter the goal region, which is challenging for RRT-like
algorithms [48] and could be addressed using a bidirectional
version of QRRT.

Second, we observe that QMP and QMP* require 14.52s
and 37.27s to solve the Scissor scenario and that QMP requires
18.98s to solve the Metal scenario. To explain this rather large
increase in runtime, we have a closer look at the individual
runtimes, which we show in Table IV. We can observe that
both planner exhibit one of two outputs. Either, they quickly
return a solution (usually less than 3s, always less than 10s) or
they fail and time out at 60s (three/two times for QMP, zero/six
times for QMP*). To us, this indicates that both algorithms
might be sensitive to the base space path. If the base path is
not smooth enough, has kinks in it or is too close to obstacles,
then we might not be able to solve it with the pattern dance
algorithm. We could address this problem in the future by
either additional smoothing of the base space path [100], by
introducing conservative heuristics [12] or by switching to a
different relaxed model [91].

B. Base path does not admit a feasible section

While all multilevel planner are probabilistically complete,
we often need the pattern dance algorithm to efficiently solve
a problem. However, we might encounter scenarios, where
the base path does not admit a feasible path section. Such
a situation is shown in Fig. 11. The scenario depicts an X-
shape robot, which has to traverse a shape-sorter box with
different openings, which we relax by inscribing a sphere
(right). Planning for the spherical robot might produce a base
path going through the wrong hole. Such a base path does not
admit a feasible path section, meaning there are no paths along
the path restriction of the base path to traverse towards the
goal. While multilevel planner are probabilistically complete
and would eventually resolve the situation, we would not be
able to solve this situation using our pattern dance algorithm.
To address such situations, we could either compute several
base paths [65, 32, 101, 69, 7, 74] and consider them as
a multi-arm bandit problem over path restrictions [49] or
we could automatically choose an alternative relaxation using
either a meta-heuristic [9] or a brute-force search [64].

VIII. CONCLUSION

We developed the pattern dance algorithm, which takes as
input a base space path and efficiently searches for a feasible

section in its path restriction using four dedicated section
patterns, which we named Manhattan, Wriggle, Tunnel and
Triple step. We showed in evaluations, that our pattern dance
algorithm successfully coordinates section patterns and outper-
forms a similar sidestepping algorithm [68]. We then showed
that multilevel motion planning algorithms using our pattern
dance algorithm outperform classical planner from the OMPL
library on challenging narrow passage scenarios including
the Bugtrap, chain egress and precision grasping. With some
exceptions, we often observed runtime improvements by one
to two orders of magnitudes.

While we demonstrated to efficiently solve narrow passage
problems, we also pointed out two limitations. First, we
observe an increased runtime in some planning instances. We
could address this problem by either optimizing the base path
[107], by improved neighborhood modeling [50] or by learning
the section patterns themselves [41]. Second, we cannot handle
cases where the base path does not admit a path section.
We could address this problem by computing multiple base
paths [65, 69, 101] or using more informed graph restriction
sampling methods [64].

Despite limitations, we believe to have contributed a novel
solution method which we can use to efficiently find sections
over base path restrictions. We believe our method to be a
promising tool to further probe, understand and efficiently
exploit high-dimensional state spaces.
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[79] J. Röwekämper, G. Tipaldi, and W. Burgard, “Learning to guide ran-
dom tree planners in high dimensional spaces,” in IEEE International
Conference on Intelligent Robots and Systems, 2013.

[80] M. Saha, J.-C. Latombe, Y.-C. Chang, and F. Prinz, “Finding nar-
row passages with probabilistic roadmaps: The small-step retraction
method,” Autonomous Robots, vol. 19, no. 3, pp. 301–319, 2005.

[81] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “An admissi-
ble heuristic to improve convergence in kinodynamic planners using
motion primitives,” IEEE Control Systems Letters, vol. 4, no. 1, pp.
175–180, 2019.

[82] ——, “Sampling-based optimal kinodynamic planning with motion
primitives,” Autonomous Robots, vol. 43, no. 7, pp. 1715–1732, 2019.

[83] O. Salzman, “Sampling-based robot motion planning,” Communica-
tions of the ACM, vol. 62, no. 10, pp. 54–63, 2019.

[84] O. Salzman and D. Halperin, “Asymptotically near-optimal RRT for
fast, high-quality motion planning,” IEEE Transactions on Robotics,
vol. 32, no. 3, pp. 473–483, 2016.

[85] O. Salzman, M. Hemmer, and D. Halperin, “On the power of manifold
samples in exploring configuration spaces and the dimensionality of
narrow passages,” in Algorithmic Foundations of Robotics X, E. Fraz-
zoli, T. Lozano-Perez, N. Roy, and D. Rus, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 313–329.

[86] A. Schweikard and F. Schwarzer, “Detecting geometric infeasibility,”
Artificial Intelligence, vol. 105, no. 1-2, pp. 139–159, 1998.

[87] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars, “Mul-
tilevel path planning for nonholonomic robots using semiholonomic
subsystems,” International Journal of Robotics Research, vol. 17, no. 8,
pp. 840–857, 1998.

[88] A. Sintov, S. Macenski, A. Borum, and T. Bretl, “Motion planning for
dual-arm manipulation of elastic rods,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 6065–6072, 2020.

[89] N. E. Steenrod, The topology of fibre bundles. Princeton Univ. Press,
1951.

[90] M. P. Strub and J. D. Gammell, “Adaptively informed trees (AIT*):
Fast asymptotically optimal path planning through adaptive heuristics,”
in IEEE International Conference on Robotics and Automation. IEEE,
2020.

[91] B. M. K. Styler and R. Simmons, “Plan-time multi-model switching for
motion planning,” in International Conference on Automated Planning
and Scheduling, 2017.
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