
BITKOMO: Combining Sampling and Optimization for Fast
Convergence in Optimal Motion Planning

Jay Kamat1,2, Joaquim Ortiz-Haro1, Marc Toussaint1, Florian T. Pokorny3, Andreas Orthey1

Abstract— Optimal sampling based motion planning and tra-
jectory optimization are two competing frameworks to generate
optimal motion plans. Both frameworks have complementary
properties: Sampling based planners are typically slow to con-
verge, but provide optimality guarantees. Trajectory optimizers,
however, are typically fast to converge, but do not provide global
optimality guarantees in nonconvex problems, e.g. scenarios
with obstacles. To achieve the best of both worlds, we introduce
a new planner, BITKOMO, which integrates the asymptotically
optimal Batch Informed Trees (BIT*) planner with the K-
Order Markov Optimization (KOMO) trajectory optimization
framework. Our planner is anytime and maintains the same
asymptotic optimality guarantees provided by BIT*, while
also exploiting the fast convergence of the KOMO trajectory
optimizer. We experimentally evaluate our planner on manip-
ulation scenarios that involve high dimensional configuration
spaces, with up to two 7-DoF manipulators, obstacles and
narrow passages. BITKOMO performs better than KOMO by
succeeding even when KOMO fails, and it outperforms BIT*
in terms of convergence to the optimal solution.

I. INTRODUCTION

Generating optimal motions plans is crucial for almost
any robotic tasks ranging from typical manipulation tasks
such as bin-picking to autonomous navigation of mobile
robots. To solve such tasks, the robotics community relies on
two powerful motion planning frameworks: Sampling-based
planners and trajectory optimization.

Sampling-based planners like RRT* [1], BIT* [2] or
FMT* [3] converge asymptotically to optimal solutions and
almost surely provide a solution if one exists [4]. However,
these planners are slow at converging to the optimal trajec-
tory, because improvements to the current best solution only
arise when we sample a state nearby [5], and often provide
non-smooth trajectories that may require post-processing [6].

Trajectory optimization methods like KOMO [7],
CHOMP [8], STOMP [9] and TrajOpt [10] use optimization
methods and can exploit gradient and second order
information to converge to a local optimal solution. These
optimization-based methods are typically fast at converging
to the local optimum, however, due to the non-convexity
of the problem, the optimizer might converge to a locally
optimal or even an infeasible trajectory. These methods
therefore do not have convergence guarantees, i.e. they
may not converge to a solution even if one exists, and the
feasibility of the solution often depends heavily on the

The research has been supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy.

1Learning & Intelligent Systems Lab, TU Berlin, Germany
2BITS Pilani, India
3RPL, EECS, KTH Royal Institute of Technology, Stockholm, Sweden

0

25

50

75

100

su
cc

es
s

[%
]

Aggregate Experiment Plot

Planner

BIT*

BITKOMO

101 102

run time [s]

0

20

40

60

so
lu

ti
o
n
 c

o
st

Fig. 1: Aggregate plot over all our experiments, showing how
BITKOMO converges faster than BIT*, while keeping a similar
success rate. KOMO is not included, because it fails to find
solutions on more than half of our experiments.

initial trajectory [11], [12], [13]. Hence, these methods
usually work well in environments with few obstacles or
when provided with good initial guesses [14], e.g. for
post-processing paths produced by sampling-based planners.

In order to combine the benefits of both frameworks,
we propose to integrate the asymptotically optimal Batch
Informed Trees (BIT*) [2] planner with K-Order Markov
Optimization (KOMO) [7], [15]. Combining sampling and
optimization helps us play on the strengths of each frame-
work and mitigate their weaknesses. Our novel algorithm,
BITKOMO, uses BIT* to iteratively generate non-optimal
initial paths that are then optimized by KOMO, which results
in quick convergence to local minima. The cost of the opti-
mized path is then used by BIT* to carry a more informed
search. With this method, we maintain the asymptotic global
optimality guarantees by BIT* while also benefiting from the
fast convergence of KOMO (Fig. 1).

At the core of BITKOMO lies a new relaxed edge collision
checking method. Relaxed edge collision is an intermediate
approach between full and lazy [16] collision checking,
where we allow partially-valid edges to remain, because the
trajectory optimizer KOMO can often push invalid paths
out of collision [15] to converge to feasible solutions. Even
though this modification allows for invalid edges, we do not
sacrifice any of the asymptotic guarantees provided by BIT*.
To summarize, we make two major contributions:

1) Relaxed edge collision checking: A method for BIT*
that allows edges partially in collision to be included
in the motion tree.

2) BITKOMO: A planner integrating BIT* and KOMO.
We integrate sampling and optimization to obtain fast
convergence to the global optimum while maintaining
the guarantees provided by the sampler.

II. RELATED WORK

Combining both asymptotically-optimal planners [17], [5],
[18], [19] and trajectory optimization [7], [8], [9], [10],
[20] into one concise algorithm is an important long-term
goal of the robotics community [21]. There exist three
main approaches. The two-step approach, where we run a
sampling-based planner like the rapidly-exploring random
tree (RRT) [4], or the probabilistic roadmap (PRM) [22]
until a valid solution path is found. In a post-processing
step [23], [6], we call a trajectory optimizer which optimizes
the path to find a (local) optimal solution. This method is
the most common approach, but does not hold guarantees on
optimality, and does not allow the sampling-based planner to
find improved solutions by leveraging information acquired
by the optimizer. Our BITKOMO approach improves upon
this methodology by tightly integrating sampling and opti-
mization in an iterative fashion. Moreover, we use relaxed
collision checking to quickly find partially-valid paths. Opti-
mizers like KOMO [7] can often repair those paths to quickly
find a solution.

The second approach is the optimizer-as-steering method,
where the integration of sampling and optimization is done
using the steering function from the planner. The regionally-
accelerated BIT* (RABIT*) [24] is an extension of BIT* that
uses an optimizer to push infeasible edges out of collision.
However, while the obtained solution cost is often better than
BIT*, calls to an optimizer are often expensive and slow
down the algorithm. It is also possible to integrate such an
approach into a roadmap planner [25], to interleave edge
creation and optimization steps. We differ by postponing
optimization to the point where a full partially-valid path
has been found, which reduces the number of unnecessary
calls to the nonlinear optimizer.

Finally, the path-proposal method, where the planner
proposes solution paths, which are then sent to the opti-
mizer [26], [27]. An important aspect of this method is to
propose many diverse solution paths, so that the optimizer
has a lesser chance to converge to similar solutions. This
can be accomplished by leveraging sparse roadmaps [28], to
generate diverse initial trajectories which we can then send
to the trajectory optimizer [29], [30], [31]. The closest work
to ours is [21], where RRT* is integrated with a nonlinear
optimizer in an iterative fashion.

Our method is complementary, in that we also use the
path-proposal method. However, we differ from previous
works by our choice of the underlying components (BIT*
and KOMO) and/or the interface. Further, the novel collision
checking improves the performance in problems involving
narrow passages, when the sampling-based planner fails to
find a path in the first place.

Sample [C] RGG [A]

KOMO

Optimizer [D]

Relaxed Edge

Checking [B]

If Graph
Exhausted

Propose
Edge

Convergence

New Path
Found

Path Cost

Fig. 2: Overview of BITKOMO, which combines the BIT* archi-
tecture with our custom relaxed edge checking for path planning,
and the KOMO optimizer for path optimization.

III. PROBLEM DEFINITION

We consider a motion planning problem in a configuration
space X ⊂ Rn of the form (Xfree, xstart, xgoal, c) where
Xfree ⊆ X is the free configuration space, xstart ∈ Xfree is the
start configuration, xgoal ∈ Xfree is the goal configuration and
c : P → R is the cost functional mapping a trajectory p ∈ P
in the free configuration space to a real number. Our goal
is to find a trajectory p : [0, 1] → Xfree from p(0) = xstart,
to p(1) = xgoal that is optimal, i.e. the value of c(p) is the
lowest among all possible paths.

min
p(t)

c(p(t)) (1a)

s.t. p(0) = xstart, p(1) = xgoal (1b)
∀t ∈ [0, 1], p(t) ∈ Xfree . (1c)

In this paper, we focus on path-length optimization, i.e.
c(p) =

∫ 1

0
||ṗ(t)|| dt. Typical examples of alternative

cost functionals are the sum of the velocities squared∫ 1

0
||ṗ(t)||2 dt, and smoothness

∫ 1

0
||p̈(t)||2 dt.

IV. BITKOMO

BITKOMO integrates two state-of-the-art motion plan-
ners: BIT* and KOMO. BIT* is an anytime, asymptotically-
optimal planner that samples collision-free configurations
in batches and generates paths using the A* graph search
algorithm. KOMO is a non-linear trajectory optimizer that
locally optimizes an initial trajectory (possibly in collision)
to minimize a cost and fulfil collision avoidance and goal
constraints. Our planner maintains the asymptotic optimality
guarantees of BIT* while converging faster to the global min-
imum by leveraging trajectory optimization. Since KOMO
uses the Augmented Lagrangian algorithm for constrained
optimization, it can sometimes push partially invalid paths
out of collision. To exploit this feature, we introduce relaxed
edge checking, which allows BIT* to produce partially
infeasible paths for subsequent optimization with KOMO
when necessary.

A. The BITKOMO Algorithm: An overview

Our planner (Fig. 2) requires a valid start state (xstart), a
goal state (xgoal) and the full information about the environ-
ment (Xfree). We also need to provide the Planner Termina-
tion condition (PTC) and the edge relaxation number (δ). To

begin, the BIT* planner samples a batch of configurations
x ∈ Xfree and builds an edge-implicit Random Geometric
Graph (RGG) [32] [Block A in Fig. 2]. The best edge that can
possibly improve the cost to goal (as in A*) is then chosen
and passed to the Relaxed Edge Checker [B] to carry out
the collision checking. The Relaxed Edge Checker performs
a validity check and returns the collision penalty (CP), an
integer that provides a proxy measure for the fraction of
the edge that is in collision. The planner uses this integer
to decide regarding the addition of the edge to the tree. If
an improved path to the goal is found, it is passed to the
KOMO optimizer [D] which locally optimizes the path and,
if valid, returns the new cost to the BIT* planner. BIT* uses
this path cost to prune the unnecessary vertices and edges
and carry out a more focused search. When no new edges
can be expanded, the Sample function [C] is called, which
adds another batch of samples to the RGG.

Algorithm 1 BITKOMO
Input Xfree, xstart, xgoal, PTC, δ

1: V ← {xstart}; E ← ∅; T ← (V, E);
2: QV ← V ; QE ← ∅;
3: Xuc ← xgoal;
4: ci ←∞; cbest ←∞;
5: cmax ← GETDIAGONALLENGTH(X)× 3;
6: while ¬PTC do
7: if QE ≡ ∅ and QV ≡ ∅ then
8: Xuc

+← PRUNE&SAMPLE(T , Xuc,m, ci);
9: QV ← V ;

10: end if
11: while BESTVALUE(QV) ≤ BESTVALUE(QE) do
12: EXPANDNEXTVERTEX(QV ,QE , ci);
13: end while
14: E = {vmin, xmin} ← POPBESTINQUEUE(QE);
15: if EDGEADDITIONHELPS(E, ci) then
16: CP ← CHECKEDGERELAXED(E);
17: if CP ≤ δ then . If true, Edge is used
18: cedge ← ĉ(E) + CP × cmax;
19: if EDGEIMPROVESCOST(E, ci, cedge) then
20: ADDEDGETOTREE(E);
21: ci ← GETCOSTTOGO(vgoal);
22: if ci < cmax then . If path is feasible
23: cbest ← ci;
24: end if
25: path← GETBESTPATH(vgoal);
26: optiPath← OPTIMIZE(path);
27: if ISVALID(optiPath) then
28: ci ← GETCOST(optiPath);
29: cbest ← ci;
30: end if
31: end if
32: end if
33: end if
34: end while
35: return Solution;

A

B

C

D

E

Fig. 3: Levels in Edge Checking The edge is first subdivided into
nd points and these points are then checked for collision level by
level. The number on the nodes represent the level of the node.
This example has 3 levels.

Algorithm 1 describes in more detail the different parts
of the planner. The highlighted lines are our addition to the
BIT* planner. Blue — the Relaxed edge collision checking,
Orange — the interface between BIT* and KOMO.

1) Initialize (A): Vertex set (V), Edge set (E), Tree (T),
Vertex queue (QV), Edge queue (QE), Set of unconnected
vertices (Xuc). Also initialize three important cost parame-
ters: 1) ci — cost used by the BIT* tree, it includes infeasible
paths; 2) cbest — the cost of the best feasible path; 3) cmax
— a penalty cost higher than any feasible path BIT* could
converge to.

2) Batch Addition (B): When we run out of the batch
samples (line 7), we prune our graph using the ellipsoid
method and add a new batch of samples [33].

3) Edge Selection (C): (The A* search) If expanding a
vertex can help improving the cost of our solution, it is
expanded, i.e., relevant vertices and edges are added to their
respective queues (line 12)

4) Edge processing (D): Decides whether to add new
edge to the tree. If the new edge can improve the overall
cost to goal (line 15), and the edge is collision free /
partially in collision (line 16, 17) such that it still is a
good edge to add (line 19), it is added to the tree (line 20).
ADDEDGETOTREE(.) rewires the tree if necessary.

5) KOMO Optimization (E): If the addition of the new
edge provides us with a better path to goal, this solution
path is optimized using KOMO (line 26). The resulting
path (optiPath) is then checked for validity and the costs
(ci and cbest) are updated accordingly. For completeness, we
also check if the initial guess is valid by checking if the path
cost is less than cmax (line 22) and update cbest if valid. The
working of KOMO is explained in IV-C.

B. Relaxed Edge Checking

High dimensional spaces containing narrow passages are
challenging for sampling based planners. This is because it
is difficult to sample collision free edges through narrow
passages. Since KOMO can push paths out of obstacles,
we could allow paths partially in collision into the BIT*
tree. However, these edges need to be added with sufficient
collision penalty to ensure that BIT* does not mistake a path
in collision to be of a lower cost than the true minima. We
also want our collision checker to quickly guess the extent of
collision so as to be quick in finding a solution for BIT*. We
solve this problem by introducing Relaxed Edge Checking
which returns a number instead of a Boolean which is used
to assign a collision penalty (line 18). It returns 0-if edge is
collision free, 1-if it fails at the last level, 2-if it fails on the

second to last level, and so on. Adding the collision penalty
this way also helps our planner to prefer collision free initial
paths for optimization as the likelihood of finding a feasible
trajectory from a collision-free path is higher.

Suppose for a given resolution, we need to check nd
equally spaced points to confirm the edge to be collision-free.
The Relaxed Edge Checker conducts a level wise collision
checking (see Fig. 3) whereby the resolution of checking
is increased until the required resolution is reached or a
collision is detected. We first check the mid point (level 1),
then the quarter points (level 2) and so on by slowly doubling
the resolution of checking. If a point fails in the validity
check, an integer, collision penalty (CP = L − Lc + 1) is
returned. Where L = dlog2 nde is the total number of levels,
and Lc is the level of the failed point. This number provides a
proxy measure for the fraction of the edge that is in collision.

C. KOMO
K-Order Markov Optimization (KOMO) is a trajectory

optimization framework that represents a path with a discrete
sequence of waypoints 〈x0 . . . xT 〉. Cost and constraints are
evaluated on, up to k + 1 consecutive waypoints (Markov
assumption)

min
x0:T

T∑
t=0

ft(xt−k:t)
>ft(xt−k:t) (2a)

s.t. ∀t : gt(xt−k:t) ≤ 0, ht(xt−k:t) = 0 , (2b)

where xt−k:t is a k + 1 tuple of consecutive states. In our
setting, where the goal is to minimize the path length, k = 1,
and we use, as cost, the sum of squared distances

∑
||xt −

xt−1||2, which corresponds to ft(xt−1, xt) = xt − xt−1.
Inequality constraints correspond to collision avoidance

and joint limits and equality constraints model the terminal
goal condition xT = xgoal. The optimization problem (2)
is solved with the Augmented Lagrangian algorithm for
constrained optimization. The Markov structure, together
with second order information, enables very efficient solving,
with complexity linear on the number of waypoints and
polynomial on the dimension of the configuration space [7].

D. Convergence and Optimality Guarantees
BITKOMO maintains the convergence and optimality

guarantees of BIT* [2]. The additional trajectory optimiza-
tion can only improve the solution proposed by BIT* (lines
26-30 in Alg. 1). The relaxed edge checking assigns cost
c > cmax (line 18 in Alg. 1) to any edge in collision (recall
that cmax is an upper bound on the optimal solution cost,
that can be chosen arbitrarily large). Even if the subsequent
optimization fails, the edge cost does not prevent BIT* and
hence BITKOMO from finding a solution with cost c < cmax.

V. EVALUATION

A. Scenarios
We evaluate our algorithm on 6 different robotic scenar-

ios1. In all scenarios, the robot moves from the initial con-
figuration (solid color) to the goal configuration (translucent

1https://github.com/JayKamat99/mt-multimodal optimization/tree/IROS 2022

(a) Disc Robot (b) Kuka from shelf (c) Kuka into box

(d) Fixed Pandas (e) Two Mobile Pan-
das (f) One Mobile Panda

Fig. 4: Scenarios used in our experimental evaluation. See the
supplementary video for the solution trajectories.

color) (Fig. 4). The trajectories computed by BITKOMO
and the baseline algorithms are shown in the supplementary
video2. We emphasize the challenges of each problem with
the keywords: narrow passage, not informative heuristic and
high-dimensional.

1) Disc Robot in Rooms: A Disc Robot needs to move
from the center of one room to another (Fig. 4a). The
difficulty is that, to go to the other room, the robot
first needs to come out of the starting room and then
move to the target room. Challenges: narrow passages
and not informative heuristic.

2) Kuka to reach onto the shelf: The Kuka robot needs
to reach the red object at level 1 from it’s current
position where the end-effector is at level 2 (Fig.4b).
Challenges: High-dimensional.

3) Kuka to reach into a box: The Kuka Robot needs
to reach to the object inside the box that is located
under a table while avoiding collision with the table or
the box (Fig. 4c). Challenges: Narrow Passage, High
Dimensional.

4) Two Fixed Pandas: The robotic manipulators (Pandas)
need to get to the base of the opposite robot while
avoiding hitting each other (Fig. 4d). Challenges: High
Dimensional.

5) Two Mobile Pandas in cluttered environment: Two
mobile panda robots need to move to the other side of
the room while avoiding obstacles and also avoiding
each other (Fig. 4e). Challenges: High Dimensional,
Narrow Passages.

6) One Mobile Panda to avoid large obstacle: The mobile
panda needs to move to catch an object on the other
side of the scene, with a large obstacle blocking it’s
way (Fig. 4f). Challenges: High Dimensional, Narrow
Passages.

2https://www.youtube.com/watch?v=HveYWl4wMAI

https://github.com/JayKamat99/mt-multimodal_optimization/tree/IROS_2022
https://www.youtube.com/watch?v=HveYWl4wMAI

0

20

40

60

80

100
su

cc
es

s
[%

]

10-2 10-1 100 101

run time [s]

2

3

4

5

so
lu

ti
o
n
 c

os
t

(a) Disc Robot in Rooms

0

20

40

60

80

100

su
cc

es
s

[%
]

10-2 10-1 100 101

run time [s]

0

5

10

15

so
lu

ti
o
n
 c

os
t

(b) Kuka from shelf

0

20

40

60

80

100

su
cc

es
s

[%
]

10-2 10-1 100 101

run time [s]

0

5

10

15

so
lu

ti
o
n
 c

os
t

(c) Kuka into the box

0

20

40

60

80

100

su
cc

es
s

[%
]

10-1 100 101

run time [s]

0

5

10

15

20

so
lu

ti
o
n
 c

os
t

(d) Fixed Pandas

0

20

40

60

80

100

su
cc

es
s

[%
]

100 101 102

run time [s]

0

10

20

30

40

50
so

lu
ti
o
n
 c

os
t

(e) Two Mobile Pandas

0

20

40

60

80

100

su
cc

es
s

[%
]

10-1 100 101

run time [s]

0

10

20

30

40

so
lu

ti
o
n
 c

os
t

(f) One Mobile Panda

Fig. 5: Results: Success rates and best cost plots for BITKOMO, BIT*, FMT* and KOMO on the 6 different example
environments.

B. Baselines

We compare our BITKOMO planner with BIT* [2],
KOMO [7] and FMT* [3]. Path length minimization is used
as the optimization objective for all the experiments. We used
the Open Motion Planning Library (OMPL) [34] framework
for the implementations of the sampling based planners and
for carrying out the benchmarks.

For the KOMO planner we use the sum of squares of the
distances between waypoints as optimization objective, and
an initialization with random noise around p(ti) = xstart ∀ti.
The trajectory is represented with a constant number of way-
points (20 points). Random initialization and optimization
are executed iteratively until timeout, updating the path cost
when a better path is found.

C. Metrics

We evaluate the planners on 2 different metrics:
1) Success rate (%): The % of runs that have found a fea-

sible solution at time t. This metric gives information
about how fast the planner finds the first feasible path.

2) Cost: The average best cost of the planner at time t.
This metric gives us an understanding about how the
best cost solution of a planner evolves over time and
the practical convergence speed before the timeout.

D. Experimental Results

For getting unbiased results, all experiments were con-
ducted on the same machine3. Every planner was executed
50 times on all the six example scenarios. The maximum
execution time however was different for different scenarios
depending on the difficulty. The edge relaxation number δ

3Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz having 16GB RAM

was set to 1 for all examples. The results of the benchmarks
are shown in Fig. 5.

1) Success rate: The success rate of BIT* and BIKOMO
were higher compared with other planners in all examples
except the Two Mobile Pandas example. This scenario has
narrow passages which makes it hard for sampling based
planners, however, the optimal solution is very similar to a
straight line path in the configurations space, making it very
easy for KOMO to find a solution here. The relaxed edge
checking helps BITKOMO in having a slightly better success
rate than BIT* here. The anomaly in BIKOMO success rate
in Fig. 5d is because of a failed optimization. This failure is
because of the thin obstacles in the C-Space arising due to
collision between robots. This, however, is not a large time
difference. Choosing a smaller edge relaxation number, δ,
will fix it. Overall, the success rates of BIT* and BITKOMO
were found to be very similar because they generate initial
paths using the same base algorithm.

2) Cost: BITKOMO decreases the cost significantly faster
than BIT*, with better convergence before the timeout. This
is because the combination of sampling and optimization
converges to the local minima quickly and consistently. We
however see an abnormality in Fig.5a. This is because — 1)
KOMO is not much faster than sampling for low dimensions,
and 2) The waypoints maintain a certain minimum distance
from the obstacles to avoid edge collisions.

Overall, we conclude that our planner is mostly as good as
BIT* in finding the first feasible solution and slightly faster in
high dimensional narrow passage problems, but much faster
at converging to the global optimal solution.

VI. DISCUSSION AND CONCLUSION

Our planner, BITKOMO, combines BIT* and KOMO to
achieve fast convergence to the optimal solution while being

anytime and asymptotically converging to the global mini-
mum. Our experiments indicate that BITKOMO converges
to the global optima, faster than BIT*. It also provides con-
vergence guarantees which KOMO does not. Using Relaxed
Edge Checking, our planner exploits the ability of KOMO to
move trajectories away from the obstacles that are in collision
by allowing partially infeasible paths as initial guesses to
the optimizer. This helps BITKOMO find motions through
narrow passages faster than BIT*.

Even though we observe faster convergence than BIT* to
optimal paths, our planner does not have a better success
rate. A dedicated planner could be developed to generate
improved initial guesses to the optimizer, resulting in an in-
creased success rate. The optimization and sampling modules
could also easily be parallelized, providing a higher speed-
up. Calling the KOMO optimizer ahead of the BIT* planner
could increase the speed further.

Our experiments clearly demonstrate that BITKOMO can
robustly achieve fast convergence to optimal motion plans.
This is an important step towards making optimal motion
planners converge as quickly as trajectory optimizers — all
while keeping asymptotic optimality guarantees.

REFERENCES

[1] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in 49th IEEE conference
on decision and control (CDC). IEEE, 2010, pp. 7681–7687.

[2] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed
trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs,” in 2015 IEEE
international conference on robotics and automation (ICRA). IEEE,
2015, pp. 3067–3074.

[3] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching
tree: A fast marching sampling-based method for optimal motion
planning in many dimensions,” The International journal of robotics
research, vol. 34, no. 7, pp. 883–921, 2015.

[4] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[5] O. Salzman and D. Halperin, “Asymptotically near-optimal rrt for
fast, high-quality motion planning,” IEEE Transactions on Robotics,
vol. 32, no. 3, pp. 473–483, 2016.

[6] R. Geraerts and M. H. Overmars, “Creating high-quality paths for
motion planning,” The international journal of robotics research,
vol. 26, no. 8, pp. 845–863, 2007.

[7] M. Toussaint, “Newton methods for k-order markov constrained mo-
tion problems,” arXiv preprint arXiv:1407.0414, 2014.

[8] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
2009 IEEE International Conference on Robotics and Automation.
IEEE, 2009, pp. 489–494.

[9] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
2011 IEEE international conference on robotics and automation.
IEEE, 2011, pp. 4569–4574.

[10] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[11] W. Merkt, V. Ivan, and S. Vijayakumar, “Leveraging precomputation
with problem encoding for warm-starting trajectory optimization in
complex environments,” in IEEE International Conference on Intelli-
gent Robots and Systems. IEEE, 2018, pp. 5877–5884.

[12] T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of
motion for warm-starting trajectory optimization,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2594–2601, 2020.

[13] J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg, “Deep learning
can accelerate grasp-optimized motion planning,” Science Robotics,
vol. 5, no. 48, p. eabd7710, 2020.

[14] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[15] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in International
Joint Conference on Artificial Intelligence, 2015.

[16] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in IEEE International Conference on Robotics and Automa-
tion. IEEE, 2015, pp. 2951–2957.

[17] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[18] J. D. Gammell and M. P. Strub, “Asymptotically optimal sampling-
based motion planning methods,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 4, pp. 295–318, 2021.

[19] M. P. Strub and J. D. Gammell, “AIT* and EIT*: Asymmet-
ric bidirectional sampling-based path planning,” arXiv preprint
arXiv:2111.01877, 2021.

[20] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,”
International Journal of Robotics Research, vol. 37, no. 11, pp. 1319–
1340, 2018.

[21] V. N. Hartmann, O. S. Oguz, and M. Toussaint, “Planning planning:
The path planner as a finite state machine,” 2020.

[22] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[23] J. Kim, R. A. Pearce, and N. M. Amato, “Extracting optimal paths
from roadmaps for motion planning,” in IEEE International Confer-
ence on Robotics and Automation, vol. 2. IEEE, 2003, pp. 2424–2429.

[24] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and
S. Scherer, “Regionally accelerated batch informed trees (rabit*): A
framework to integrate local information into optimal path planning,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2016, pp. 4207–4214.

[25] K. V. Alwala and M. Mukadam, “Joint sampling and trajectory
optimization over graphs for online motion planning,” in IEEE In-
ternational Conference on Intelligent Robots and Systems. IEEE,
2020, pp. 4700–4707.

[26] A. Kuntz, C. Bowen, and R. Alterovitz, “Fast anytime motion planning
in point clouds by interleaving sampling and interior point optimiza-
tion,” in Robotics Research. Springer, 2020, pp. 929–945.

[27] M. Xanthidis, N. Karapetyan, H. Damron, S. Rahman, J. Johnson,
A. O’Connell, J. M. O’Kane, and I. Rekleitis, “Navigation in the
presence of obstacles for an agile autonomous underwater vehicle,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 892–899.

[28] A. Orthey, B. Frész, and M. Toussaint, “Motion planning explorer:
Visualizing local minima using a local-minima tree,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 346–353, April 2020.

[29] S. Dai, M. Orton, S. Schaffert, A. Hofmann, and B. Williams,
“Improving trajectory optimization using a roadmap framework,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 8674–8681.

[30] C. Park, F. Rabe, S. Sharma, C. Scheurer, U. E. Zimmermann, and
D. Manocha, “Parallel cartesian planning in dynamic environments
using constrained trajectory planning,” in 2015 IEEE-RAS 15th Inter-
national Conference on Humanoid Robots (Humanoids). IEEE, 2015,
pp. 983–990.

[31] A. Orthey and M. Toussaint, “Visualizing local minima in multi-robot
motion planning using multilevel morse theory,” in Workshop on the
Algorithmic Foundations of Robotics, 2020.

[32] M. Penrose, Random geometric graphs. OUP Oxford, 2003, vol. 5.
[33] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed

trees (bit*): Informed asymptotically optimal anytime search,” The
International Journal of Robotics Research, vol. 39, no. 5, pp. 543–
567, 2020.

[34] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

http://planning.cs.uiuc.edu/

	Introduction
	Related Work
	Problem Definition
	BITKOMO
	The BITKOMO Algorithm: An overview
	Initialize (A)
	Batch Addition (B)
	Edge Selection (C)
	Edge processing (D)
	KOMO Optimization (E)

	Relaxed Edge Checking
	KOMO
	Convergence and Optimality Guarantees

	Evaluation
	Scenarios
	Baselines
	Metrics
	Experimental Results
	Success rate
	Cost

	Discussion and Conclusion
	References

