
Camera-Based Belief Space Planning in Discrete
Partially-Observable Domains

Janis Eric Freund1, Camille Phiquepal2, Andreas Orthey1,3, Marc Toussaint1

Abstract—Robots often have to operate in discrete partially
observable worlds, where the state of the world is only observ-
able at runtime. To react to different world states, robots need
contingencies. To find contingencies, prior work developed the
path tree optimization (PTO) method, which computes motion
contingencies by constructing a tree of motion paths in belief
space. In this paper, we extend upon PTO by enabling camera-
based belief space planning through an extension of the open
motion planning library (OMPL). By leveraging this extension,
we develop an improved camera-based state sampler and an
efficient open-source implementation of PTO. This version of
PTO supports a virtual camera, non-euclidean state spaces, and
different state samplers. We evaluate this improved version of
PTO on four realistic scenarios with a virtual camera in up to
10-dimensional state spaces. In our evaluations, we compare
PTO both with a default and with the new camera-based
state sampler. The results indicate that the camera-based state
sampler improves success rates in 3 out of 4 scenarios while
having a significant lower memory footprint. Our work thus
makes an important step in advancing belief-space planning and
provides researchers with an open source tool to use, modify,
and benchmark belief-space planning methods.

I. INTRODUCTION

Motion planning is a prerequisite to use robots in search
and rescue missions, and for autonomous driving. However,
in real-world environments, a robot might have limited sens-
ing ability and can only observe the world partially. While
robots might have a precise map of an office building, they
might not know if doors are open or closed. This requires
robots to make observations to figure out the state of the
world. However, once a robot makes an observation, it needs
to potentially replan its path to fulfill its task. This is often
costly and sub-optimal. Fig. 1 illustrates such a problem,
wherein a robot needs to find a box that can be located at
three different locations.

In prior work [13], this problem was addressed by com-
puting a path tree to capture contingencies when observing
different world states. The resulting path tree optimization
method [13] (Original-PTO) showed promising results in
realistic scenarios. However, Original-PTO uses a simple
observation model which is not based on a realistic camera
image. Original-PTO also does not support non-euclidean
configuration spaces, which makes it not applicable to a wide
set of robots. Original-PTO is also not implemented in the
open motion planning library (OMPL) [18], which makes
it difficult to compare to other planners and to disseminate

1Technical University of Berlin, Germany
2Machine Learning & Robotics Lab, University of Stuttgart, Germany
3Realtime Robotics Inc., Boston, MA, USA

Fig. 1: A planning problem, where the robot (black) needs to
find a partially observable box which can be located at three
different locations (green, red, blue). The robot can only observe
the locations when they are in its field of view (grey). Our planner
PTO computes contingencies for robot motions, such that the robot
can act optimally, even when the robot either observes the object at
a location (green, red robot poses), or if the object is not present.

the method to the wider research community. Furthermore,
samples in Original-PTO are generated randomly, which
makes it hard to find the crucial observation points.

To address those problems, we develop an extension of
OMPL, and leverage this extension to provide an improved
version of the PTO planner. PTO differs from Original-PTO
by being fully implemented in OMPL, supporting both non-
euclidean configuration spaces, and a virtual camera model.
Furthermore, a new camera-based state sampler is developed,
which generates higher quality samples by sampling configu-
rations where the camera points into the general direction of
partially-observable objects. In summary, our contributions
are:

1) An extension of OMPL to support a virtual camera
model for camera-based belief-space planning.

2) A new camera-based state sampler, which enables more
efficient belief space planning through a bias towards
configurations at observation points.

3) An implementation of PTO using the OMPL extension,
which supports camera-based belief space planning and
supports non-euclidean state spaces.

Those contributions are evaluated on four scenarios by
integrating the OMPL implementation into the PyBullet [3]
simulator.

II. RELATED WORK

Most work on motion planning in belief space builds
on classic sampling-based planners like the rapidly explor-
ing random trees (RRTs) [12], and probabilistic roadmaps
(PRMs) [11]. RRTs grow a random tree by sampling the
configuration space iteratively. PRMs instead construct a
roadmap graph of the free configuration space. While the
base variants of RRTs and PRMs are not asymptotically
optimal [10], other variants like rapidly exploring random
graphs (RRGs) [10], optimal RRTs (RRT∗) [10], and batch
informed trees (BIT∗) [4] are asymptotically optimal. Our
approach differs to sampling-based planners by building upon
RRGs and using them as the foundation to conduct planning
in discrete belief space.

Belief spaces are often introduced because of uncertainty
about the world. Motion planning under uncertainty can
be formalized using partially observable Markov decision
processes (POMDPs) [9]. POMDPs extend Markov decision
processes (MDPs) by including situations in which the robot
does not know about the state of the world. There are
algorithms that try to solve these problems using Gaussian
belief spaces [2], [8], [15], [21]. The goal of these algorithms
is to minimize the uncertainty of the robot’s location. To solve
POMDPs, roadmaps in belief space can be planned to deal
with uncertainties of motions and observations [15], [21].
Roadmap-based planning can be combined with dynamic
replanning to react to changing environments and deviations
from the position of the robot [1]. POMDPs have also been
combined with a model predictive control step to account
for uncertainties in the world state [19]. Another area where
POMDPs have been successfully applied are task and motion
planning (TAMP) problems, where POMDPs have been
used to reduce uncertainties [5], [7], and to create paths
across different modes corresponding to specific tasks [20].
Those approaches are complementary to our approach in that
they plan in continuous belief spaces. Instead, we consider
problems involving discrete beliefs about the state of the
environment and finite observations.

The closest work is the Original-PTO method by Phiquepal
et al. [13]. Based upon earlier works [14], this planner first
introduces the idea of planning path trees in belief space.
Our PTO method builds directly upon this work and adds
substantial improvements as stated in our contributions.

III. DISCRETE BELIEF SPACE PLANNING

A belief space planning problem for a robot R is defined
by a robot state space X = Q × B, consisting of the
configuration space Q, and a belief space B, together with
a world W , and a hypothesis space H . The robot config-
uration space C is a fully-observable n-dimensional space
representing robot configurations q ∈ Q. The world W is an
environment in which objects and goals can have different
states, as depicted in Fig. 2. It is initially unknown in which
state the world W happens to be. The hypothesis space H
is the finite, discrete set h ∈ H representing all possible

Fig. 2: We support two world states. Left: A world with partially
observable objects, namely two doors (red, blue). The robot starts
at the black state and needs to reach the white flag. The resulting
path tree has two observation points (red, blue), at which the
robot observes the state of the doors (open or closed) and plans
accordingly. Right: A world with a partially observable goal state
(red, green, or blue box is present). The resulting path tree has two
observation points (green, red), at which the robot updates its path
according to the observation made (box exists or not).

states in which the world W can be. Finally, the belief space
B represents probability distributions b ∈ B over the world
hypothesis space H with B being the set of all probability
distributions on H given an initial belief b0 ∈ B.

The robot R can explore the world through observations
o ∈ O. An observation at state x ∈ X is a function from
the camera image and the belief of the robot to a discrete
output if an object state has been detected. We assume that
observation outputs are binary, i.e. we either detect an object
state or we do not, which leads to a finite belief space B.

The goal of discrete belief space planning is to create a
path tree ψ. A path tree ψ is a directed tree, where edges are
paths in the state space X having either the same belief state
(movement edges), or the same configuration (observation
edges). Nodes are observation points at which the belief state
of the robot changes. This path tree represents contingencies
for the robot, such that for every observation outcome (e.g.
an object is present or not), the robot has a possible option
of how to move in the world W .

A. Optimization Objective

We are not only interested in finding some path tree,
but in finding an optimal path tree ψ∗ over all possible
path trees [13]. Our optimization objective is constructed as
follows:

ψ∗ = argmin
ψ

∑
(u,v)∈ψ

C(u, v)p (v | ψ, b0) , (1a)

s.t.
∀h ∈ H,∃l ∈ L(ψ) | G(l), (1b)
V(u, v),∀(u, v) ∈ ψ, (1c)

bv(h) =
p(o | h)bu(h)∑
h′ p (o | h′) bu (h′)

,∀h ∈ H, (u, o, v) ∈ ψ (1d)

whereby C(u, v) is the cost of the edge that connects the
nodes u and v. The objective defined by Eq. (1a) is to find
an optimal path tree ψ∗ that minimizes the sum of the costs
C(u, v) over all pairs of nodes in a path tree ψ, while also

Fig. 3: Structure of the PTO algorithm. The respective algorithm parts of PTO are explained in sections IV-A, IV-B, and IV-C.

taking into account the conditional probability of reaching
the node v given an initial belief b0. Also, some constraints
apply: Constraint (1b) makes sure that for each state h ∈ H ,
it must exist at least one leaf node l ∈ L(ψ) that satisfies
the goal condition given by G(l). L(ψ) gives the set of all
leaf nodes of the path tree ψ. This condition ensures the
completeness of the path tree. Furthermore, the constraint
(1c) checks if all edges (u, v) ∈ ψ are valid as given by
V(u, v). The constraint (1d) specifies that the belief state
bv(h) of the node v should be consistent with the belief bu(h)
of its parent node u when making the observation o while
transitioning from u to v. p(o|h) is the observation model.

IV. PATH TREE OPTIMIZATION METHOD

The PTO planner is composed of three steps as shown in
Fig. 3. First, a random graph Grandom on the configuration
space is created. This graph contains information about
validity of nodes and edges in different world states. Second,
a belief graph Gbelief on the state space (configuration space
plus belief space) is created which adds edges on nodes
where a belief change occurs. Finally, we use a dynamic
programming search on the belief graph to compute optimal
expected cost-to-go values for all nodes. Using those cost-
to-go values, we eventually extract the path tree.

A. Random Graph Creation

In the first step, a rapidly exploring random graph [10]
Grandom on the robot configuration space is created. This
graph is annotated with additional information: For each
configuration, we store a list of all partially observable
objects which can be seen. For each edge, we store a list
of world states in which this edge is valid.

The process of the random graph creation is illustrated in
Fig. 4a. It consists of two phases. First, we sample a random
configuration in the robot configuration space, and we sample
a random world state. It is then checked if the configuration
is valid in this particular world state. If it is valid, we add it
to the graph. Afterwards, we search for all observable objects
in the world from the current configuration. This information
is stored for use in the belief graph creation (Sec. IV-B).

Second, a neighborhood search is conducted to add edge
connections to all viable neighbor configurations in the graph.
This is accomplished by iterating over all world states, and
getting the nearest configurations for each world state in a
specific radius R. For each nearest configuration, we check
if the edge is valid in the world state. If it is valid, we add

the edge to the graph, or update an existing edge by adding
the valid world state to the edge itself.

This iterative process is stopped once a planner terminate
condition is reached. This can be a number of iterations, or a
timeout. The final random graph consists of nodes and edges
on the configuration space, together with the information
about valid world states.

B. Belief Graph Creation

In the second step, we use the random graph Grandom
to create a belief space graph Gbelief. This is illustrated in
Fig. 4b. The belief graph Gbelief extends the random graph
to the state space by creating nodes and edges, which both
contain configurations and beliefs.

The process of creating a belief graph consists of three
phases. First, we iterate over all vertices v in Grandom, and
over all belief states b ∈ B. For each vertex belief pair (v, b)
we check if the vertex is reachable in the given belief b. This
is accomplished by checking if there is at least one edge in
which b is valid. If there is at least one, we add the pair (v, b)
to the belief graph.

In the second phase, nodes of the belief graph are con-
nected with edges. Those edges are created by iterating over
all edges on the random graph Grandom. For each edge, we
compute the compatible beliefs for the valid world states. For
each compatible belief, we add one edge to the belief graph,
which connects the nodes of the same belief. After the second
phase, there is one graph for each belief, and those graphs
are disconnected.

In the third phase, all individual belief graphs are con-
nected to each other. This means we add observation edges,
where only the belief, but not the configuration changes. For
this, we iterate over all vertices in the current belief graph
Gbelief. For each vertex, we analyse the observable objects
from this configuration, and we compute the beliefs that
result if the objects are observed at the given belief. For
each of those beliefs, we then add an observation edge. For
example, if there is an observable object at the configuration,
we would add one connection to the belief state where the
door is observed as closed, and one edge to the belief state
where the door is observed to be open.

C. Extraction of Path Tree

Once the belief graph Gbelief is constructed, we use a
Dijkstra-like algorithm [17] to compute the optimal cost-to-
go values for each vertex, from which we extract the path tree

(a) Creating a random graph Grandom (b) Creating a belief graph Gbelief (c) Extracting the path tree ψ

Fig. 4: The three steps of the PTO method. Left: A random graph is constructed on the configuration space, with information in which
world states ([1,2,3,4], [1,3], [1]) an edge is valid. Middle: The random graph is extended to the belief space by adding edges
whenever an observation changes the belief. Right Expected costs are calculated and the path tree is extracted from the belief graph.

ψ. The cost-to-go is computed using dynamic programming
by Bellmann updates for each vertex in the graph to all goal
vertices.

The path tree extraction is done recursively. Given the
belief graph Gbelief with cost-to-go values, we first compute
a list containing all goal vertices. Those vertices are added
to the path tree. Then, for each goal vertex, we add the next
best node with the lowest cost-to-go value. This process is
continued until we either reach the start vertex, or we reach
a branching point, where two paths are joined along a single
vertex. Once the method terminates, we return the path tree
which can then be used by the robot to move through the
world towards the goal.

V. CAMERA-BASED STATE SAMPLER

In Original-PTO, the random graph is constructed through
uniform sampling. However, uniform sampling depends on
chance whether a partially observable object is seen. Since
the potential locations of all partially observable objects
are known to the planner, we can take advantage of this,
by developing a camera-based state sampler. This sampler
creates configurations in which the robot’s camera is directly
looking towards a partially observable object that exists in
the current world state.

The camera-based state sampler is shown in Alg. 1. First,
the algorithm calls the function GETRANDOMOBJECT (Line
1), which returns a randomly selected object as the target
object, i.e. the object that should be seen by the camera.
Then the position of the target object is queried (Line 2),
and a random workspace point is sampled (Line 3), at which
we like our camera to be positioned.

Given this information, we compute a camera frame. We
first compute a normalized direction pointing towards the
selected objects from the workspace point (Line 4, 5). After-
wards, a frame represented by a rotation matrix is computed,
which points its z-axis towards the object, while keeping the
camera horizontal (Line 6-9). This is done by first computing

Algorithm 1: Camera-based State Sampler
Data: World W
Result: State q

1 object ← GetRandomObject(W);
2 Tobject ← GetObjectCenter(object);
3 Tcamera ← GetRandomWorkspacePoint();
4 cz ← Tobject − Tcamera;
5 Normalize(cz);
6 ez ← [0, 0, 1];
7 cx ← CrossProduct(ez , cz);
8 cy ← CrossProduct(v, cx);
9 Rcamera ← RotationMatrix([cx, cy , cz]);

10 q ←
CalculateInverseKinematics({Tcamera, Rcamera});

11 return q;

the x-axis of the frame as the cross-product of the direction
cz and the unit vector that points in the positive z-direction
(Line 6, 7). The y-axis of the frame consists of the cross-
product of the direction and the x-axis of the frame (Line 8).
This frame is represented as a rotation matrix located at the
random workspace point (Line 9).

Finally, this camera frame is used in an inverse kinematics
(IK) solver (Line 10). Based on the camera frame, the
IK solver computes a joint configuration that leads to the
camera pointing towards the target object. This configuration
is eventually returned (Line 11).

This camera-based sampler can sample states from which
the camera can directly observe partially observable objects.
This leads to an increase in states in the random graph that are
associated with observations. By combining this sampler with
a uniform sampler, we can guarantee asymptotic optimality
of PTO.

The camera-based sampler also implements a method that
replaces the uniform sampling of the base position with
values that can be passed to the method as arguments. This
can be used in the random graph creation described in section

(a) Door Environment (b) Search and Rescue Environment (c) Warehouse Environment

Fig. 5: The door, search and rescue, and warehouse environments used for benchmarking.

Fig. 6: Result on parking environment with a Reeds-Shepp car.

IV-A. Before sampling randomly, new states can be sampled
at the corresponding start position of the base while the robot
observes the existing objects in this configuration.

VI. EXPERIMENTS

We evaluate our implementation of PTO with the default
sampler against PTO with the camera-based state sampler
on four scenarios. Each run is repeated 12 times and we
report on average success rate and cost. The belief for all
experiments is initialized with an uniformly distributed initial
belief. The experiments are performed on a laptop with 16
GB of RAM using Ubuntu 20.04. PyBullet is used in version
3.2.5. The OMPL library is extended using version 1.5. The
code is open source and can be accessed via github1. For each
scenario, a different timeout has been used, which reflects
realistic requirements, and makes the differences in solutions
better visible. We showcase solution costs only after 50% of
scenarios have been solved.

A. Door Environment

The first environment represents a living area with three
doors (Fig. 5a). All doors are partially observable, i.e. the
three-dimensional robot needs to observe if they are open or
closed.

A resulting path tree is shown in Fig. 5a. Following the
trajectory, the robot first observes the blue door. If the door
is open, the robot takes a path through the door and reaches
the goal. If the blue door is closed, the robot next observes

1https://github.com/janisfreund/path-tree-optimization

the red door. If the door is open, the robot directly moves to
the goal. If the red door is closed, the robot instead moves
until it can observe the green door. If it is open, the robot
takes the path going through the green door. Otherwise, the
robot takes the path avoiding all doors.

Figure 7 shows the performance of the PTO planner using
the default sampler versus using the camera-based sampler.
For the camera-based state sampler, the robot reaches a
100% success rate after around 500 seconds, which is a
60% improvement to the around 800 seconds needed for the
default sampler. Both solution costs improve over time with
a slight advantage for the camera-based state sampler.

B. Search and Rescue Environment

The second experiment is a search and rescue scenario.
It consists of planning a path for a Franka robot arm [6],
mounted on a mobile base. A camera is attached to the end-
effector of the robot. Together, the robot has ten dimensions,
three corresponding to the base and seven corresponding to
the arm. In the scenario, a dog must be rescued from an
office. Potential locations of the dog are known in advance,
but the actual position of the dog is unknown at planning
time.

A path tree, planned by the PTO planner, is visualized in
Figure 5b. Since the dog can only be at one location at once,
there are exactly four different world states. First, the robot
observes the potential locations of the dog in the following
order: green, blue, purple, and red. If the observed location
reveals the presence of the dog, the robot moves directly
towards the site. Otherwise, it continues the path tree to the
next observation point.

The results are shown in Fig. 7. The default state sampler
reaches a success rate of almost 92% after approximately
600 seconds, but the camera-based sampler finds all solutions
after 300 seconds. The camera-based sampler converges
relatively quickly with the standard deviation approaching
zero, while the costs using the default sampler are higher
and associated with a greater standard deviation. This can be
explained by the 10-dimensional configuration space, making
it less likely to sample a state with an informative camera
position.

https://github.com/janisfreund/path-tree-optimization

Fig. 7: We compare PTO with a uniform random state sampler against PTO with the camera-based state sampler .

C. Warehouse Environment

The third experiment is an item retrieval task in a ware-
house as shown in Fig. 5c. A path is planned for the Franka
robot arm which is mounted on a mobile base, as in the
second experiment. The location of the item is not known
at planning time, but the planner knows about two potential
positions. Both item locations are occluded by a wall, so the
robot is not able to directly observe them.

A path tree planned by PTO is shown in Fig. 5c. There
are only two possible states of the world: Either the object is
at the red or the blue location. In the planned path tree, the
robot directly moves towards the window. From this state, it
is able to observe the blue item. If it exists, the robot moves
through the left door and picks up the box. If the blue object
does not exists, the robot moves through the right door.

The benchmark results are shown in Fig. 7. In the allocated
time frame, the camera-based state sampler solves 80% of
the cases, while the default sampler solves 40%. Only the
solution cost for the camera-based state sampler is shown
(after 50% cases were solved). It can be seen that both the
mean cost and the deviation decrease over time, indicating
that the the planner converges to a low-cost solution. This
scenario demonstrates the benefits of using the camera-based
sampler, since finding the window location is beneficial to
allow the robot to quickly make the correct decision.

D. Parking Environment

In the final environment, we evaluate PTO on a parking
scenario using the non-euclidean Reeds-Shepp car’s state
space [16] as shown in Fig. 6. The task is to park in one of
four parking lots. The parking lots can be free or occupied.

Fig. 6 also shows a planned path tree. For better visibility,
the branches of the path tree are shown in different images.
First, the car observes the parking lot associated with the red
car. If it is empty, the car drives towards this parking space
(Fig. 6 a and b). If the red car exists, the car observes the
parking lot of the green car next. If the green car does not
exists, it directly parks in that lot (Fig. 6 c). If it exists, the

car observes the spot of the blue car. It parks there if it cannot
detect the blue car (Fig. 6 d). Otherwise, it drives to the last
remaining spot (Fig. 6 e).

The benchmark results are shown in Fig. 7. The samplers
are comparable, although the default state sampler only find
80% of the solutions after 300s. It is noticeable that the
standard deviation of the cost is relatively high for both
samplers, but converges over time to a similar value.

VII. CONCLUSION

We presented PTO, an improved planner based on prior
work by Phiquepal et al. [13]. PTO has been shown to
solve problems with multiple partially observable objects,
and problems with multiple partially observable goal regions.
We implemented PTO in the open motion planning library
(OMPL), added support for simulated cameras, and for non-
euclidean state spaces. An additional innovation is the novel
camera-based state sampler, which biases sampling towards
configurations at which important observations can be made.
In our evaluations, we showed PTO to converge to near
optimal solutions.

While we believe this to be a significant improvement,
there are two remaining limitations. First, partially observable
objects can only take exactly two states. However, objects
might be associated with more than two states, like recon-
figurable tools, or different robot attachments. PTO could
accommodate this by adding an additional detection method
of object states from the camera image. Second, the PTO
method uses internally three sequentially executed phases.
However, this can increase runtime because belief space
sampling is decoupled. This could be remedied by developing
a unified version to directly sample in belief space.

Despite limitations, PTO was shown to be a well-suited
planner for motion planning in discrete partially observable
environments. PTO has strong guarantees like asymptotic
optimality, and is implemented in OMPL, such that the
robotics community can benefit from and build upon this
work.

REFERENCES

[1] Ali-akbar Agha-mohammadi, Saurav Agarwal, Aditya Mahadevan,
Suman Chakravorty, Daniel Tomkins, Jory Denny, and Nancy M.
Amato. Robust online belief space planning in changing environments:
Application to physical mobile robots. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 149–156.
IEEE, May 2014.

[2] Adam Bry and Nicholas Roy. Rapidly-exploring Random Belief Trees
for motion planning under uncertainty. In 2011 IEEE International
Conference on Robotics and Automation, pages 723–730. IEEE, May
2011.

[3] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics
simulation for games, robotics and machine learning. http://pybullet.
org, 2016–2021.

[4] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Bar-
foot. Batch Informed Trees (BIT∗): Sampling-based Optimal Planning
via the Heuristically Guided Search of Implicit Random Geometric
Graphs. arXiv, May 2014.

[5] Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack
Kaelbling, and Dieter Fox. Online Replanning in Belief Space for
Partially Observable Task and Motion Problems. arXiv, November
2019.

[6] Sami Haddadin, Sven Parusel, Lars Johannsmeier, Saskia Golz, Simon
Gabl, Florian Walch, Mohamadreza Sabaghian, Christoph Jähne, Lukas
Hausperger, and Simon Haddadin. The franka emika robot: A reference
platform for robotics research and education. IEEE Robotics &
Automation Magazine, 29(2):46–64, 2022.

[7] Dylan Hadfield-Menell, Edward Groshev, Rohan Chitnis, and Pieter
Abbeel. Modular task and motion planning in belief space. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4991–4998. IEEE, 2015.

[8] Qi Heng Ho, Zachary N. Sunberg, and Morteza Lahijanian. Gaussian
Belief Trees for Chance Constrained Asymptotically Optimal Motion
Planning. In 2022 International Conference on Robotics and Automa-
tion (ICRA), pages 11029–11035. IEEE, May 2022.

[9] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassan-
dra. Planning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

[10] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms
for optimal motion planning. The International Journal of Robotics
Research, 30(7):846–894, 2011.

[11] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–
580, August 1996.

[12] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach
to single-query path planning. In IEEE International Conference on
Robotics and Automation, volume 2, pages 995–1001. IEEE, 2000.

[13] Camille Phiquepal, Andreas Orthey, Nicolas Viennot, and Marc Tou-
ssaint. Path-tree optimization in discrete partially observable environ-
ments using rapidly-exploring belief-space graphs. IEEE Robotics and
Automation Letters, 7(4):10160–10167, 2022.

[14] Camille Phiquepal and Marc Toussaint. Control-Tree Optimization: an
approach to MPC under discrete Partial Observability. In International
Conference on Robotics and Automation (ICRA), pages 9666–9672.
IEEE, May 2021.

[15] Sam Prentice and Nicholas Roy. The belief roadmap: Efficient planning
in linear pomdps by factoring the covariance. In Robotics Research:
The 13th International Symposium ISRR, pages 293–305. Springer,
2011.

[16] James Reeds and Lawrence Shepp. Optimal paths for a car that
goes both forwards and backwards. Pacific journal of mathematics,
145(2):367–393, 1990.

[17] Moshe Sniedovich. Dijkstra’s algorithm revisited: the dynamic pro-
gramming connexion. Control and cybernetics, 35(3):599–620, 2006.

[18] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine, 19(4):72–
82, December 2012. https://ompl.kavrakilab.org.

[19] Carl Hynén Ulfsjöö and Daniel Axehill. On Integrating POMDP and
Scenario MPC for Planning under Uncertainty – with Applications to
Highway Driving. In 2022 IEEE Intelligent Vehicles Symposium (IV),
pages 1152–1160. IEEE, June 2022.

[20] William Vega-Brown and Nicholas Roy. Asymptotically optimal
planning under piecewise-analytic constraints. In Algorithmic Foun-
dations of Robotics XII: Proceedings of the Twelfth Workshop on the
Algorithmic Foundations of Robotics, pages 528–543. Springer, 2020.

[21] Dongliang Zheng, Jack Ridderhof, Panagiotis Tsiotras, and Ali-akbar
Agha-mohammadi. Belief Space Planning: A Covariance Steering
Approach. arXiv, May 2021.

http://pybullet.org
http://pybullet.org
https://ompl.kavrakilab.org

	Introduction
	Related Work
	Discrete Belief Space Planning
	Optimization Objective

	Path Tree Optimization Method
	Random Graph Creation
	Belief Graph Creation
	Extraction of Path Tree

	Camera-based State Sampler
	Experiments
	Door Environment
	Search and Rescue Environment
	Warehouse Environment
	Parking Environment

	Conclusion
	References

